Anglia Square, Norwich Proposed Surface Water Drainage Strategy

Dated March 2022

Weston Homes

Proposed Surface Water Drainage Strategy March 2022

EAS

Anglia Square Regeneration Norwich Norfolk

Document History

JOB NUMBER:	3831/2022
DOCUMENT REF:	SUDS/3831/2022
REVISIONS:	B - Final

Revision	Comments	Ву	Checked	Authorised	Date
A	Client Draft	MD/JP	SA	SA	07.03.2022
В	Final	MD	MD	SA	01.04.2022
С					
D					
E					

EAS

Contents

1	Introduction	2
2	Policy Framework and Pre-	
Appl	ication Comments	5
• •	Local Policy	5
	Greater Norwich Local Plan	5
	Development Management Policies Loc	al
	Plan	5
	Natural England and Nutrient Neutrality	•
	Assessments	6
3	Existing Site Description and	
Drair	nage Features	8
		•
	Existing Site Description	8
	Site Levels	8
	Sewer Network	8
	Pre-Development Starage Volumes	9
	Existing Sowers, Diversions and Build (9 Dvorc
	Existing Sewers, Diversions and Build-C	10
		10
4	Proposed Drainage Strategy	11
	Relevant SuDS Policy	11
	Site-Specific SuDS	12
	Post- Development Run-off Rate	13
	Proposed Drainage Strategy	14
	System 1	14
	System 2	15
	System 3	16
	System 4	17
	System 5	17
	System 6	18
	System 7	19
	System 8	20
	Summary of Catchments and Proposed	
	Outfall Rates	21
	Attenuation Tank Alarm System	21
	Exceedance Routes	22
	Sewer Diversions	23
	Foul Sewer Network	23

5 **Other Proposed SuDS Features** 24

7 8

	SuDS Features	24
	Green Roofs	24
	Bio-Retention Swales	25
	Tree Planters	25
	Pervious Pavements	27
6	Maintenance of Development	
Drai	nage	28
	Manholes and Sewers	29
	Gutters and Downpipes	30
	Orifice Plate with Suitable Filter	30
7	Conclusions	31
8	Appendices	33
	Appendix: A – Location Plan	34
	Appendix: B – Proposed Development	Plans
		35
	Appendix: C – Topographical Survey	36
	Appendix: D – Thames Water Sewer	
	Mapping	37
	Appendix: E – Existing Run-off Rates	38
	Appendix: F – Existing Run-off Catchm	ents
		. 39
	Appendix: G – Indicative Sewer Diversi	ions
	Appendixy II Creanifield Dur off Date	40
	Appendix. n – Greenield Run-on Rate	35 71
	Appendix: I - Anglian Water Approval I	41 n
		42
	Appendix J – Hydraulic Model Outputs	43
	Appendix K – Surface Water Drainage	
	Layout	44
	Appendix L – Anglian Water Diversion	
	Information	45
	Appendix M – Anglian Water Foul Wate	er
	Capacity Check	46

TRANSPORT PLANNING 🔳 HIGHWAYS AND DRAINAGE 🔳 FLOOD RISK 🗏 TOPOGRAPHICAL SURVEYS Unit 23 The Mailings Stanstead Abbotts Hertfordshire SG12 8HG Tel 01920 871 777 e: contact@eastp.co.uk www.eastp.co.uk

1 Introduction

- 1.1 This Surface Water Drainage Strategy Report has been prepared by EAS on behalf of Weston Homes Plc (the Applicant) in support of a hybrid (part full/part outline) planning application, (the Application), submitted to Norwich City Council (NCC) for the comprehensive redevelopment of Anglia Square and various parcels of mostly open surrounding land, (the Site), as shown within a red line on drawing 'ZZ-00-DR-A-01-0200'.
- 1.2 The Site is located in a highly accessible position within the northern part of Norwich City Centre and comprises a significant element of the Anglia Square/Magdalen Street/St Augustines Large District Centre, (the LDC). It is thus of strategic importance to the City, and accordingly has been identified for redevelopment for many years within various local planning policy documents, including the Northern City Centre Area Action Plan 2010, (NCCAAP), (now expired), the Joint Core Strategy for Broadland, Norwich and South Norfolk 2014, (JCS), and NCC's Anglia Square and Surrounding Area Policy Guidance Note 2017, (PGN). The Site forms the principal part of an allocation (GNLP 0506) in the emerging Greater Norwich Local Plan (GNLP).
- 1.3 This application follows a previous application on a somewhat smaller development parcel, (NCC Ref. 18/00330/F) made jointly by Weston Homes Plc as development partner and Columbia Threadneedle Investments, (CTI), the Site's owner, for a residential-led mixed use scheme consisting of up to 1,250 dwellings with decked parking, and 11,000 sqm GEA flexible ground floor retail/commercial/non-residential institution floorspace, hotel, cinema, multi-storey public car park, place of worship, and associated public realm and highway works. This was subject to a Call-in by the Secretary of State (PINS Ref. APP/G2625/V/19/3225505) who refused planning permission on 12th November 2020, (the 'Call in Scheme').
- 1.4 In April 2021, following new negotiations with Site owner CTI, Weston Homes decided to explore the potential for securing planning permission for an alternative scheme via an extensive programme of public and stakeholder engagement, from the earliest concepts to a fully worked up application. The negotiations with CTI have secured a "Subject to Planning" contract to purchase the Site, (enlarged to include the southeastern part of Anglia Square fronting Magdalen Street and St Crispins Road), which has enabled a completely fresh approach to establishing a redevelopment scheme for Anglia Square. This has resulted in a different development brief for the scheme, being to create a replacement part of the larger LDC suited to the flexible needs of a wide range of retail, service, business and community uses, reflective of trends in town centre character, integrated with the introduction of homes across the Site, within a highly permeable layout, well connected to its surroundings.
- 1.5 The new development proposal seeks to comprehensively redevelop the Site to provide up to 1,100 dwellings and up to 8,000sqm (NIA) flexible retail, commercial and other non-residential floorspace including Community Hub, up to 450 car parking spaces (at least 95% spaces for class C3 use, and up to 5% for class E/F1/F2/Sui Generis uses), car club spaces and associated works to the highway and public realm areas (the Proposed Development). These figures are maxima in view of the hybrid nature of the application. This

proposes part of the scheme designed in full, to accommodate 367 dwellings, 5,808 sqm non-residential floorspace, and 146 car parking spaces (at least 95% spaces for residential use, and up to 5% for non-residential use), with the remaining large part of the Site for later detailed design as a "Reserved Matters" application, up to those maxima figures.

- **1.6** A separate report, undertaken by others, deals with the flood risk assessment, hydraulic modelling study and impact assessment and should be read in conjunction with this report.
- 1.7 This document has been prepared in support of the Planning Application with the following description:

"Hybrid (part full/part outline) application on site of 4.65ha for demolition and clearance of all buildings and structures and the phased, comprehensive redevelopment of the site with 14 buildings ranging in height from 1 to 8 storeys, for a maximum of 1,100 residential dwellings, (houses, duplexes and flats) (Use Class C3); a maximum of 8,000 sqm flexible retail, commercial and other non-residential floorspace (retail, business, services, food and drink premises, offices, workshops, non-residential institutions, community hub, local community uses, and other floorspace (Use Classes E/F1/F2/Sui Generis (public conveniences, drinking establishments with expanded food provision, bookmakers and/or nail bars (up to 550sqm), and dry cleaner (up to 150sqm))); service yard, cycle and refuse stores, plant rooms, car parking and other ancillary space; with associated new and amended means of access on Edward Street and Pitt Street, closure of existing means of access on Edward Street, New Botolph Street, Pitt Street and St Crispins Road flyover, formation of cycle path between Edward Street and St Crispins Road, formation of wider footways, laybys and other associated highway works on all boundaries, formation of car club parking area off New Botolph Street, up to 450 car parking spaces (at least 95% spaces for class C3 use, and up to 5% for class E/F1/F2/Sui Generis uses), hard and soft landscaping of public open spaces comprising streets and squares/courtyards for pedestrians and cyclists, other landscape works within existing streets surrounding the site, service infrastructure and other associated work; (All floor areas given as maximum Net Internal Area);

Comprising;

Full planning permission on 2.25ha of the site for demolition and clearance of all buildings and structures, erection of 8 buildings ranging in height from 1 to 8 storeys for 367 residential dwellings (Use Class C3) (149 dwellings in Block A, 25 dwellings in Block B, 21 dwellings in Block C, 34 dwellings in Block D, 8 dwellings in Block J3, 81 dwellings in Block K/L, and 49 dwellings in Block M) with associated cycle and refuse stores), and, for 5,808 sqm flexible retail, commercial and other non-residential floorspace (retail, business, services, food and drink premises, offices, workshops, non-residential institutions, community hub, local community uses, and other floorspace (Use Classes E/F1/F2/Sui Generis (public conveniences, drinking establishments with expanded food provision, bookmakers and/or nail bars (up to 550sqm), and dry cleaner (up to 150sqm))), service yard, cycle and refuse stores, plant rooms, car parking and other ancillary space, with associated new and amended means of access on Edward Street, closure of existing means of access on Edward Street and New Botolph Street, formation of cycle path from Edward Street to St Crispins Road, formation of wider footways, laybys and other associated highway works on Edward Street, New Botolph Street, and Magdalen Street, formation of car club parking area off New Botolph Street, 146 car parking spaces (at least 95% spaces for class C3 use, and up to 5% for class E/F1/F2/Sui Generis uses) within Blocks A and B, hard and soft landscape works to public open spaces comprising streets and squares for pedestrians and cyclists, other landscape

works, service infrastructure and other associated works; (All floor areas given as maximum Net Internal Areas);

and

Outline planning permission on 2.4ha of the site, with landscaping and appearance as reserved matters, for demolition and clearance of all buildings and structures, erection of 6 buildings (Blocks E – H and J) ranging in height from 3 to 8 stories for up to 733 residential dwellings, (houses, duplexes, and flats) (Use Class C3), a maximum of 2,192 sqm flexible retail, commercial and other non-residential floorspace (retail, business, services, food and drink premises, offices, non-residential institutions, local community uses and other floorspace (Use Classes E/F1/F2/Sui Generis (drinking establishments with expanded food provision, bookmakers and/or nail bars (up to 550sqm), and dry cleaner (up to 150sqm))); cycle and refuse stores, plant rooms, car parking and other ancillary space; with associated new and altered means of access on Pitt Street and St Crispins Road, closure of means of access on Pitt Street and St Crispins Road, a maximum of 304 car parking spaces (at least 95% spaces for class C3 use, and up to 5% for class E/F1/F2/Sui Generis uses), service infrastructure and other associated works (landscaping and appearance are reserved matters); (All floor areas given as maximum Net Internal Areas)."

- 1.8 A location plan is contained in **Appendix A**.
- 1.9 The proposed Outline/Full Planning Application Boundaries and Development Proposals are contained in **Appendix B**.
- 1.10 The provision of an effective drainage system for the new development is very important as the site is located at the downstream end of a Critical Drainage Area (CDA). The reduction of surface water runoff from the site will provide a benefit when compared to the existing site. This document discusses the drainage options for the site, to demonstrate that any additional surface water runoff from the proposed development can be managed sustainably without increasing flood risk to others.

2 Policy Framework and Pre-Application Comments

Local Policy

Greater Norwich Local Plan

"We are working with Broadland District Council, Norfolk County Council and South Norfolk District Council to prepare the Greater Norwich Local Plan (GNLP).

The GNLP will build on the long-established joint working arrangements for Greater Norwich which have delivered the current Joint Core Strategy (JCS) for the area. The JCS plans for the housing and job needs of the area to 2026 and the GNLP will ensure that these needs continue to be met to 2036.

The GNLP will include strategic planning policies and will also allocate individual sites for development. It will aim to ensure that new homes and jobs are delivered and the environment is protected and enhanced, promoting sustainability and the effective functioning of the area."

- 2.1 The GNLP was submitted to the Secretary of Stage for independent examination on 30th July 2021. The emerging plan allocates the Anglia Square site (GNLP0506) for Mixed Use Allocation.
- 2.2 Emerging Policy: GNLP Policy 2 would be anticipated to reduce the risk of fluvial flooding that may arise as a result of development, through the requirement to carry out flood risk assessments, and incorporate sustainable drainage measures.
- 2.3 Emerging Policy : GNLP Policy 2 would be anticipated to mitigate the risk of surface water flooding that may arise as a result of development, through the requirement for development to incorporate sustainable drainage measures and contribute to the green infrastructure cover.
- 2.4 An indicative drainage plan incorporating sustainable drainage (SuDS) is included in Section 7, detailing how surface water will be managed on the site and the rationale for the approaches used. Surface water runoff from the site will be restricted as far as possible to ensure that the risk of flooding both to the site and elsewhere is minimised, taking into account the effects of climate change.

Development Management Policies Local Plan

2.5 The Development Management Policies Plan (DM policies) sets out policies which will apply across the whole city, as well as policies which apply in designated areas.

Policy DM5 – Planning effectively for flood resilience' details the policy for flooding, sustainable drainage and surface water flooding and surface treatment. The policy states:

"Developers will be required to show that the proposed development:

- would not increase the vulnerability of the site, or the wider catchment, to flooding from surface water run-off from existing or predicted water flows; and
- would, wherever practicable, have a positive impact on the risk of surface water flooding

in the wider area.	oung
Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk	Page 5
TRANSPORT PLANNING 🔳 HIGHWAYS AND DRAINAGE 📑 FLOOD RISK 🗐 TOPOGRAPHICAL SURVEYS	

Development must, as appropriate, incorporate mitigation measures to reduce surface water runoff, manage surface water flood risk to the development itself and to others, maximise the use of permeable materials to increase infiltration capacity, incorporate on-site water storage and make use of green roofs and walls wherever reasonably practicable.

The use of permeable materials, on-site rainwater storage, green roofs and walls will be required unless the developer can provide justification to demonstrate that this would not be practicable or feasible within the constraints or configuration of the site, or would compromise wider regeneration objectives."

2.6 The landscaping of the development in terms of surface water management is also considered in Policy DM5. This states:

"Development proposals will be required to maximise the use of soft landscaping and permeable surfacing materials unless the developer can provide justification to demonstrate that this is not feasible.

Where permission is required, proposals involving the provision of new or replacement paved and other impermeable surfaced areas will only be permitted:

- in areas of impermeable soils as identified in Appendix 1;
- in other areas where it can be demonstrated that permeable surfaces are not practicable due to poor soil infiltration capacity, high groundwater levels or risk of subsidence; and
- in areas with soils with average or good infiltration capacity, where it can be demonstrated that there is an exceptional and overriding justification for such surfaces.

In cases where poor soil infiltration capacity or other factors preclude the use of permeable surfacing materials, development proposals should seek to manage and minimise the impact of surface water run-off by suitable measures for water storage on-site."

2.7 An indicative drainage plan incorporating sustainable drainage (SuDS) is included in Section 7, detailing how surface water will be managed on the site and the rationale for the approaches used. Surface water runoff from the site will be restricted as far as possible to ensure that the risk of flooding both to the site and elsewhere is minimised, taking into account the effects of climate change.

Natural England and Nutrient Neutrality Assessments

- 2.8 In March 2022, Natural England issued a letter to Local Planning Authorities, Environment Agency and all Heads of Planning and Chief Executives to give advice for development proposals with the potential to affect water quality resulting in adverse nutrient impacts on habitats and sites. The letter provides advice on the assessment of new plans and projects under Regulation 63 of the Habitats Regulations. The purpose of that assessment is to avoid adverse effects occurring on habitats sites as a result of the nutrients released by those plans and projects. This advice does not address the positive measures that will need to be implemented to reduce nutrient impacts from existing sources, such as existing developments, agriculture, and the treatment and disposal of wastewater. It proposes that nutrient neutrality might be an approach that planning authorities wish to explore.
- 2.9 The following background is given:

"In freshwater habitats and estuaries, poor water quality due to nutrient enrichment from elevated nitrogen and phosphorus levels is one of the primary reasons for habitats sites being in unfavourable condition. Excessive levels of nutrients can cause the rapid growth of certain plants through the process of eutrophication. The effects of this look different depending on the habitat, however in each case, there is a loss of biodiversity, leading to sites being in 'unfavourable condition'. To achieve the necessary improvements in water quality, it is becoming increasingly evident that in many cases substantial reductions in nutrients are needed. In addition, for habitats sites that are unfavourable due to nutrients, and where there is considerable development pressure, mitigation solutions are likely to be needed to enable new development to proceed without causing further harm.

In light of this serious nutrient issue, Natural England has recently reviewed its advice on the impact of nutrients on habitats sites which are already in unfavourable condition. Natural England is now advising that there is a risk of significant effects in more cases where habitats sites are in unfavourable condition due to exceeded nutrient thresholds. More plans and projects are therefore likely to proceed to appropriate assessment.

The principles underpinning HRAs are well established. At the screening stage, plans and projects should only be granted consent where it is possible to exclude, on the basis of objective information, that the plan or project will have significant effects on the sites concerned. Where it is not possible to rule out likely significant effects, plans and projects should be subject to an appropriate assessment. That appropriate assessment must contain complete, precise and definitive findings which are capable of removing all reasonable scientific doubt as to the absence of adverse effects on the integrity of the site.

Appropriate assessments should be made in light of the characteristics and specific environmental conditions of the habitats site. Where sites are already in unfavourable condition due to elevated nutrient levels, Natural England considers that competent authorities will need to carefully justify how further inputs from new plans or projects, either alone or in combination, will not adversely affect the integrity of the site in view of the conservation objectives. This should be assessed on a case-by-case basis through appropriate assessment of the effects of the plan or project. In Natural England's view, the circumstances in which a Competent Authority can allow such plans or projects may be limited. Developments that contribute water quality effects at habitats sites may not meet the no adverse effect on site integrity test without mitigation.

Mitigation through nutrient neutrality offers a potential solution. Nutrient neutrality is an approach which enables decision makers to assess and quantify mitigation requirements of new developments. It allows new developments to be approved with no net increase in nutrient loading within the catchments of the affected habitats site.

Where properly applied, Natural England considers that nutrient neutrality is an acceptable means of counterbalancing nutrient impacts from development to demonstrate no adverse effect on the integrity of habitats sites and we have provided guidance and tools to enable you to do this."

2.10 A Nutrient Neutrality Assessment is to be undertaken by others and will be submitted as part of this planning application.

3 Existing Site Description and Drainage Features

Existing Site Description

- 3.1 The site is located at Anglia Square, Norwich and consists of a shopping precinct including stores such as Iceland and Boots and a former cinema. Large office blocks are also present at the site; the disused seven-storey Sovereign House which runs north-south along Boltoph Street previously housed Her Majesty's Stationary Office (HMSO) and the under-utilised six-storey Gildengate House, built over shops underneath.
- 3.2 The existing site is almost entirely impermeable and is served by both private and adopted foul and surface water sewers. Surface water run-off is unrestricted and untreated and ultimately outfalls to the adopted sewer network to the south-east of the site.

Site Levels

- 3.3 A site-specific topographic survey is included in **Appendix C**. For the main Anglia Square site, levels vary between 5.09m AOD in the north west corner to 2.40m AOD at the existing access road from St Crispin's Road to the south of the site. Away from this low spot, levels in the south east corner of the site are in the region of 3.08m AOD. For the existing Anglia Square shopping centre, levels are around 3.51m AOD. The site slopes in a generally south easterly direction at a gradient of approximately 1:125
- 3.4 The parcel north west of New Boltoph Street slopes in a southerly direction, at a gradient of approximately 1:185 with the highest level to the north west of the site at 5.40m AOD and the lowest level at 5.11m AOD at the southern extent of the parcel. The site is approximately 0.35-0.4m higher than the carriageway of New Boltoph Street/ Edward Street.
- 3.5 North of Edward Street the site slopes towards the north, at a gradient of approximately 1:100, with the highest point in the south west corner at a level of 4.27m AOD and the lowest point in the north at 3.87m AOD.

Sewer Network

- 3.6 Sewer records, obtained from Anglian Water and included in **Appendix D**, show there to be a 675mm surface water sewer and 300mm foul sewer flowing in a south westerly direction through the site.
- 3.7 A 300mm surface water sewer and 225mm foul sewer also run west to east with Edward Street, to the north of the main portion of the site. Both sewers connect to the respective foul and surface water sewers in Magdalen Street before flowing southwards and discharging into the River between Fye Bridge Street and Whitefriars Bridge.
- 3.8 A further 525mm combined sewer flows southwards along Magdalen Street. It is highly likely that surface water flows from the Dalymond Dyke flow within this sewer, given the location of the sewer and the available information on the Dalymond Dyke.
- 3.9 The sewer locations and sizes within the site boundary are shown in more detail on the topographical survey contained in **Appendix C.**

Pre-Development Runoff Rate

- 3.10 The existing brownfield site is approximately 90% impermeable comprising a shopping centre, office block, paved open spaces and car park. Surface water run-off is unrestricted and untreated and ultimately outfalls to the adopted sewer network to the south-east of the site. As such, it is not suitable to consider the runoff from the site as though it is an undeveloped greenfield site. It is therefore appropriate to use a 'like for like' approach, i.e. quantify the runoff from the existing developed brownfield site and assess it against the proposed developed site whilst provide a betterment in terms of run-off and water quality.
- 3.11 An existing impermeable area for the hybrid site is calculated at 40,712m² or 4.0712ha.
- 3.12 Using the Modified Rational Method detailed in Butler, D and Davies, J. (2006), Urban Drainage, 2nd ed., SPON, the surface water runoff for the existing site has been calculated as follows: -

Q = CiA where Q = maximum flow rate (l/s)

C = PIMP/PR

i= rainfall intensity (mm/hr),

A=area (ha)

- 3.13 WINDES MicroDrainage was used to assess rainfall intensities for each storm event and using the above formula, the following existing run-off rates have been calculated:
 - 1 in 1 year 30.99mm/hr = 350.47 l/s
 - 1 in 30 year 76.03mm/hr = 859.87 l/s
 - 1 in 100 year 98.68mm/hr = 1115.97 l/s
- 3.14 Existing run-off rates calculations are contained in **Appendix E**.
- 3.15 An analysis was undertaken to review the areas of the existing site which drain to the adopted sewer network. For information, this is included in **Appendix F**.

Pre-Development Storage Volumes

- 3.16 A simple analysis was carried out based on the topographical survey. The various sewers serving the existing site along with the diameters are shown on the topographic survey. These were measured and the available capacity in each sewer has been calculated. This analysis identified only the private sewers which outfall from the existing development to the adopted sewers but does not include the adopted sewers themselves or any outfall pipes from gullies or rainwater pipes. It is noted that there could be additional private sewers which haven't been picked up on the topographical survey so were not included in this analysis.
- 3.17 The storage volume available in the pipe network serving the existing brownfield site is as follows:
 - 150dia 335.4m = 6.04m3
 - 225dia 296.4m = 11.86m3
 - 300dia 71.5m = 5.08m3
 - 375dia 34.9m = 3.84m3

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Page 9

- Assume 1m3 volume for each manhole. 30 x manholes = 30m³
- 3.18 The total 'storage' volume available in the surface water sewers on the existing site is therefore approximately **56.82m3**.

Existing Sewers, Diversions and Build-Overs

- 3.19 The proposals will require the adopted surface and foul water sewers which cross the site to be diverted. It is anticipated that a S185 Sewer diversion Application shall be made to Anglian Water which will preclude the need for any Build-Over Agreements. A sketch showing an indicative route for diverted adopted sewers is contained in **Appendix G**. Further information on sewer diversions are contained in Section 4.
- 3.20 A number of private surface and foul water sewers serve the existing site. These sewers are not anticipated to be retained as part of the proposed surface water drainage strategy and will therefore be removed and new surface and foul water sewers provided.

4 Proposed Drainage Strategy

Relevant SuDS Policy

- 4.1 The NPPF states within Flood Zone 1, "developers and local authorities should seek opportunities to reduce the overall level of flood risk in the area and beyond through the layout and form of the development, and the appropriate application of sustainable drainage techniques (SuDS)".
- 4.2 SuDS mimic the natural drainage system and provide a method of surface water drainage which can decrease the quantity of water discharged, and hence reduce the risk of flooding. In addition to reducing flood risk, these features can improve water quality and provide biodiversity and amenity benefits.
- 4.3 The SuDS management train incorporates a hierarchy of techniques and considers all three SuDS criteria of flood reduction, pollution reduction, and landscape and wildlife benefit. In decreasing order of preference, the preferred means of disposal of surface water runoff is:
 - Discharge to ground.
 - Discharge to a surface water body.
 - Discharge to a surface water sewer.
 - Discharge to a combined sewer.
- 4.4 The philosophy of SuDS is to replicate as closely as possible the natural drainage from a site pre-development and to treat runoff to remove pollutants, resulting in a reduced impact on the receiving watercourses. The benefits of this approach are as follows:
 - Reducing runoff rates, thus reducing the flood risk downstream.
 - Reducing pollutant concentrations, thus protecting the quality of the receiving water body.
 - Groundwater recharge.
 - Contributing to the enhanced amenity and aesthetic value of development areas.
 - Providing habitats for wildlife in developed areas, and opportunity for biodiversity enhancement.

Site-Specific SuDS

4.5 The various SuDS methods need to be considered in relation to site-specific constraints. Several SuDS options are available to reduce or temporarily hold back the discharge of surface water runoff. Table 4.1 outlines the constraints and opportunities to each of the SuDS devices in accordance with the hierarchical approach outlined in The SuDS Manual CIRIA C753. It also indicates what could and could not be incorporated within the development, based upon site-specific criteria.

Device	Description	Constraints / Comments	Appropriate
Living roofs (source control)	Provide soft landscaping at roof level which reduces surface water runoff.	Roof Terraces and Roof Gardens are proposed as part of this development.	Yes
Infiltration devices & Soakaways (source control)	Store runoff and allow water to percolate into the ground via natural infiltration.	Potential for high groundwater and contamination indicated due to brownfield site.	No
Pervious surfaces (source control)	Storm water is allowed to infiltrate through the surface into a storage layer, from which it can either infiltrate and/or slowly release to sewers.	Potential for high groundwater and contamination indicated due to brownfield site. Lined permeable paving is proposed in some pedestrian areas which are outside the main thoroughfares.	Yes
Rainwater harvesting (source control)	Reduces the annual average rate of runoff from the site by reusing water for non-potable uses e.g. toilet flushing, recycling processes.	Potential to use recycled rainwater for toilet flushing. Depends on internal design.	Possibly
Swales (permeable conveyance)	Broad shallow channels that convey / store runoff, and allow infiltration (ground conditions permitting).	Bioretention swales and tree-pits are proposed alongside Botolph Street as part of the highway drainage strategy. Further swales and bioretention swales are proposed within pedestrian areas across the site.	Yes
Filter drains & perforated pipes (permeable conveyance)	Trenches filled with granular materials (to take flows from adjacent impermeable areas) that convey runoff while allowing infiltration.	Potential for high groundwater and contamination indicated due to brownfield site.	No
Filter Strips (permeable conveyance)	Wide gently sloping areas of grass or dense vegetation that remove pollutants from run-off from adjacent areas.	Potential for high groundwater and contamination indicated due to brownfield site.	No
Infiltration basins (end of pipe treatment)	Depressions in the surface designed to store runoff and allow infiltration.	High density city centre site Potential for high groundwater and contamination indicated due to brownfield site.	No
Wet ponds & constructed wetlands (end of pipe treatment)	Provide water quality treatment & temporary storage above the permanent water level.	High density city centre site so no landscaped areas for ponds and wetlands.	No
Attenuation Underground (end of pipe treatment)	Oversized pipes or geo-cellular tanks designed to store water below ground level.	These are proposed as the SuDS listed above will not achieve sufficient volumes to restrict to the required rate. This is likely to be used alongside other means of attenuation at the site to provide the required storage volume.	Yes

 Table 4.1: Site Specific Sustainable Drainage

Post- Development Run-off Rate

- 4.6 Given the potentially high groundwater and contamination of the site, infiltration is not recommended. There are no nearby watercourses to which a connection could be made, and therefore it is proposed that the development will drain to the existing Anglian Water surface water network in the vicinity of the site at a restricted discharge rate.
- 4.7 As discussed in Section 3, the existing site outfalls unrestricted and untreated into the adopted sewer network. Para. 3.13 summarises the existing outfall rates for each storm event.
- 4.8 For information only, the greenfield run-off rates were calculated using WINDES MicroDrainage software, these are based on a total proposed impermeable area of 4.51ha and are summarised below and included in **Appendix H**.
 - QBAR 0.3 l/s/ha = 1.353 l/s
 - 1:1yr 0.3 l/s/ha = 1.353 l/s
 - 1:30yr 0.8 l/s/ha = 3.608 l/s
 - 1:100yr 1.2 l/s/ha = 5.412 l/s
- 4.9 The greenfield runoff rates are very low due to the local geology of chalk. However, in reality the site is almost 100% impermeable as it has been developed into a shopping centre for many years. To achieve the discharge rates in Table 3, it would be necessary to include huge attenuation tanks below the site, which could have impacts on other features such as the local archaeology and geology. It is also acknowledged that there are existing Anglian Water sewers, including a 675mm surface water sewer and 300mm foul sewer, bisecting the site, and significant diversions may be required to locate very large attenuation tanks in these areas.
- 4.10 The site is clearly in a sensitive location, being at the downstream end of a Critical Drainage Area (CDA). The CDA relates largely to offsite surface water flows being directed through the catchment, through the site and ultimately to the River Wensum. There also appears to be local flood issues relating to the capacity of the local sewer network, although it should be noted that no surface water flooding or sewer flooding has been reported at the existing Anglia Square site.
- 4.11 As discussed in the separate FRA, measures will be in place to mitigate against the impact of these offsite flows within the site boundary. The proposed drainage system will not be designed to accept offsite flows from the rest of the catchment, but it is considered that a significant improvement can still be made by designing an effective drainage system at the site, which will benefit those downstream of the site by attenuating rainfall within the site boundary. The proposed drainage system will install drainage features which are much smaller and will have less of an impact on other aspects (such as archaeology, sewers and geology). A 50% reduction in runoff from the site, compared to the existing situation, is therefore proposed, which would have been runoff rate of 282 l/s.
- 4.12 A pre-development enquiry with Anglian Water was submitted for the previous scheme to confirm the required discharge rate from the proposed development into the sewer. Anglia Water initially responded that a reduction of run-off to 282 l/s would be unacceptable and they require a maximum of 125 l/s, based on the existing roof area and a 1 in 1 year runoff rate. This was considered to be very low for the proposed site, so an analysis was carried out of the areas of the existing site draining to the Anglian Water network (enclosed in

Appendix F). Following the submission of this further information to Anglian Water, they confirmed that their required total discharge rate to their system would be the 1 in 1 year discharge rate of 242 l/s. This should be achieved for all storm events up to and including the 1 in 100 year (+40%CC) event. The surface water should be discharged to the same sewers as the existing site, which are in Edward Street, Pitt Street and St Crispins Road. The proposed discharge rate of 242 l/s would be a 57% reduction in flows when compared to the existing site.

- 4.13 The Anglian Water 'in principle' agreement confirming the discharge rate of 242 l/s and the recommended connection points to the existing Anglian Water network is included in **Appendix I**.
- 4.14 Anglian Water have been contacted to confirm that their 'in principle' agreement to the 242 I/s outfall rate is still applicable for this scheme, once their response has been received, this report will be updated accordingly.

Proposed Drainage Strategy

- 4.15 As described in Section 1, it is proposed to make a Hybrid planning application: Full Planning for Blocks, A, B, C, J3, K/L and M and Outline Planning for Blocks E, E/F, F, G, H and J.
- 4.16 The Hybrid site layout precludes the option for separating drainage for Outline areas from Full-Planning areas. Open spaces will be utilised for locating attenuation devices and in some cases, these areas will serve both Outline and full-Planning Blocks. Where possible, drainage Systems serve only Outline or only Full-Planning areas.
- 4.17 The total impermeable area for the Hybrid site is calculated at 4.51 ha.
- 4.18 The development parcels have been split into 8no. drainage catchments:
 - System 1 Serves Block B (Full-Planning)
 - System 2 Serves Block C (Full-Planning)
 - System 3 Serves Block D and Part A (Full-Planning)
 - System 4 Serves Block E (Outline Planning)
 - System 5 Serves Block E/F (Outline Planning)
 - System 6 Serves Block F and existing Surrey Chapel (Outline Planning)
 - System 7 Serves Blocks Part A, M, Part K/L, H, G and existing Epic Studios (Mix of Full and Outline Planning)
 - System 8 Serves Blocks J3 and Part K/L (Full Planning)

System 1

4.19 "System 1" surface water drainage system comprises lined permeable paving attenuation and a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 1467m². The maximum outfall rate for this catchment has been set at 5 l/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event.

Surface water Drainage Strategy	
Anglia Square Regeneration, Norwich, No	orfolk

- 4.20 Permeable block paving attenuation covers an area of 659m² and provides surface water attenuation volume within the sub-base voids (usually 30% voids and no-fines). Flows from this permeable paving system are restricted using an orifice-plate flow control chamber flows are then directed to/cascade a geo-cellular attenuation device which also collects surface water run-off from 808m² of roof area. Flows from the geo-cellular attenuation device are restricted using a pump with outfall directed to the 225dia adopted surface water sewer in Edward Street via a down-stream defender interceptor.
- 4.21 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the permeable paving and the geo-cellular storage device whilst restricting flows to 5 l/s. The hydraulic output data is contained in Appendix J and shows an attenuation volume of 20.9m³ in the permeable paving system and a volume of 44.1m³ in the geo-cellular storage device with a maximum outfall rate of 5 l/s is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized 36m² x 1.32m deep with 95% voids this provides a maximum attenuation volume of 45.14m³. The proposed Surface Water Drainage Strategy Drawing is contained in Appendix K.
- 4.22 Water Quality This catchment comprises Residential Roofs and Low Traffic Roads. Water Quality and treatment stages are discussed below.
- 4.23 CIRIA 763 SuDS Manual Table 26.2 shows Low-Traffic Roads have a Pollution Hazard Level of LOW. All low-traffic roads in this catchment are anticipated to comprise lined permeable paving construction with outfall directed to the adopted sewer via the geo-cellular attenuation device and downstream defender interceptor. Table 26.2 shows Low-Traffic Roads have TSS of 0.5 Metals, 0.4 and Hydrocarbons 0.4. Table 26.3, SuDS mitigation indices for discharges to surface waters, shows that Permeable Paving alone provides mitigation for TSS at 0.7; Metals at 0.6 and Hydrocarbons at 0.7. Surface water run-off from low-traffic-road areas is more than sufficiently mitigated by use of Permeable Paving and will further be cleansed by the downstream defender interceptor.
- 4.24 CIRIA 763 SuDS Manual Table 26.2 shows Residential Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.2 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage.

System 2

- 4.25 "System 2" surface water drainage system a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 633m². The maximum outfall rate for this catchment has been set at 5 l/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event. Flows from the geo-cellular attenuation device are restricted using a pump with outfall directed to the 300dia adopted surface water sewer in Edward Street via a down-stream defender interceptor.
- 4.26 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the geo-cellular storage device whilst restricting flows to 5 l/s. The hydraulic output data is contained in **Appendix J** and shows an attenuation volume of 16.6m³

in the geo-cellular storage device with a maximum outfall rate of **5** I/s is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized 15.3m² x 1.32m deep with 95% voids – this provides a maximum attenuation volume of 19.18m^{3.} The proposed Surface Water Drainage Strategy Drawing is contained in **Appendix K**.

- 4.27 Water Quality This catchment comprises Residential Roofs. Water Quality and treatment stages are discussed below.
- 4.28 CIRIA 763 SuDS Manual Table 26.2 shows Residential Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.2 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage.

System 3

- 4.29 "System 3" surface water drainage system comprises intensive and extensive green roofs, bio-retention tree pits and a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 3413m² (assuming 100% impermeable). The maximum outfall rate for this catchment has been set at 22.4 l/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event. Flows from the geo-cellular attenuation device are restricted using a hydro-brake with outfall directed to the diverted 675dia adopted surface water sewer to the south of Block D via a down-stream defender interceptor.
- 4.30 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the geo-cellular storage device whilst restricting flows to 22.4 l/s. Any attenuation volume that may be provided in green roofs and bio-retention areas has not been allowed for to ensure a robust estimation of the required attenuation volumes to serve this catchment are made. The hydraulic output data is contained in **Appendix J** and shows an attenuation volume of 99.6m³ in the geo-cellular storage device with a maximum outfall rate of 22.4 l/s is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized 80m² x 1.32m with 95% voids this provides a maximum attenuation volume of 100.32m³. The proposed Surface Water Drainage Strategy Drawing is contained in **Appendix K**.
- 4.31 Water Quality This catchment comprises Residential and Other Roofs as well as Pedestrian Walkways (which will be assessed the same as a Residential Roof). Water Quality and treatment stages are discussed below.
- 4.32 CIRIA 763 SuDS Manual Table 26.2 shows Other Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via green-roofs and a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.3 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage. It should also be noted that some roof areas comprise green-roof which shall also provide some treatment of runoff.

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Page 16

TRANSPORT PLANNING III HIGHWAYS AND DRAINAGE III FLOOD RISK III TOPOGRAPHICAL SURVEYS Unit 23 The Mailings Stanstead Abbotts Hertfordshire SG12.8HG Tel 01920 \$71 777 e: contact@eastp.co.uk www.eastp.co.uk

System 4

- 4.33 "System 4" surface water drainage system comprises intensive and extensive green roofs, bio-retention swales, bio-retention tree pits/planters and a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 5865.5m². The maximum outfall rate for this catchment has been set at 35.7 l/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event. Flows from the geo-cellular attenuation device are restricted using a hydro-brake with outfall directed to the diverted 675dia adopted surface water sewer to the north of Block E via a down-stream defender interceptor.
- 4.34 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the geo-cellular storage device whilst restricting flows to 35.7 l/s. Any attenuation volume that may be provided in green roofs and bio-retention areas has not been allowed for to ensure a robust estimation of the required attenuation volumes to serve this catchment are made. The hydraulic output data is contained in **Appendix J** and shows an attenuation volume of 198.9m³ in the geo-cellular storage device with a maximum outfall rate of **35.7 l/s** is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized 161.2m² x 1.32m with 95% voids this provides a maximum attenuation volume of 202.14m³. The proposed Surface Water Drainage Strategy Drawing is contained in **Appendix K**.
- 4.35 Water Quality This catchment comprises Residential and Other Roofs as well as Pedestrian Walkways (which will be assessed the same as a Residential Roof). Water Quality and treatment stages are discussed below.
- 4.36 CIRIA 763 SuDS Manual Table 26.2 shows Other Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via green-roofs and a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.3 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage. It should also be noted that some roof areas comprise green-roof which shall also provide some treatment of runoff.

System 5

- 4.37 "System 5" surface water drainage system comprises intensive and extensive green roofs, bio-retention tree pits, lined permeable paving and a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 4562m² (assuming 100% impermeable). The maximum outfall rate for this catchment has been set at 20 l/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event. Flows from the geo-cellular attenuation device are restricted using a pump with outfall directed to the diverted 675dia adopted surface water sewer to the north of Block E via a down-stream defender interceptor.
- 4.38 Permeable block paving attenuation covers an area of 695m² and provides surface water attenuation volume within the sub-base voids (usually 30% voids and no-fines). Flows from this permeable paving system are restricted using an orifice-plate flow control chamber flows are then directed to/cascade a geo-cellular attenuation device which also collects surface water run-off from 2004m² of pedestrian walkway area and 1863m² roof area. Flows

from the geo-cellular attenuation device are restricted using a pump with outfall directed to the diverted 675dia adopted surface water sewer to the north of Block E via a down-stream defender interceptor.

- 4.39 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the permeable paving and the geo-cellular storage device whilst restricting flows to 20 l/s. The hydraulic output data is contained in **Appendix J** and shows an attenuation volume of 21.8m³ in the permeable paving system and a volume of 134.0m³ in the geo-cellular storage device with a maximum outfall rate of 20 l/s is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized 108m² x 1.32m deep with 95% voids this provides a maximum attenuation volume of 135.43m³. The proposed Surface Water Drainage Strategy Drawing is contained in **Appendix K**.
- 4.40 Water Quality This catchment comprises Residential and Other Roofs as well as Pedestrian Walkways (which will be assessed the same as a Residential Roof). Water Quality and treatment stages are discussed below.
- 4.41 CIRIA 763 SuDS Manual Table 26.2 shows Other Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via green-roofs and a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.3 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage. It should also be noted that some roof areas comprise green-roof which shall also provide some treatment of runoff.

System 6

- 4.42 "System 6" surface water drainage system comprises intensive and extensive green roofs, bio-retention swales, lined permeable paving and a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 4901m² (assuming 100% impermeable). The maximum outfall rate for this catchment has been set at 10 l/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event. Flows from the geo-cellular attenuation device are restricted using a pump with outfall directed to the diverted 675dia adopted surface water sewer to the north of block E via a down-stream defender interceptor.
- 4.43 Permeable block paving attenuation (over two areas) covers a total area of 1844m² and provides surface water attenuation volume within the sub-base voids (usually 30% voids and no-fines). Flows from this permeable paving system are restricted using orifice-plate flow control chambers flows are then directed to/cascade to a geo-cellular attenuation device which also collects surface water run-off from 1473m² of pedestrian walkway area and 1585m² roof area. Flows from the geo-cellular attenuation device are restricted using a pump with outfall directed to the diverted 675dia adopted surface water sewer to the north of Block E via a down-stream defender interceptor.
- 4.44 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the permeable paving and the geo-cellular storage device whilst restricting flows to 10 l/s. The hydraulic output data is contained in **Appendix J** and shows

an attenuation volume of $43.2m^3$ (PP-03 13 m³ + PP-04 33.2 m³) in the permeable paving system and a volume of $206.4m^3$ in the geo-cellular storage device with a maximum outfall rate of **10 l/s** is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized $165m^2 \times 1.32m$ deep with 95% voids – this provides a maximum attenuation volume of $206.9m^3$. The proposed Surface Water Drainage Strategy Drawing is contained in **Appendix K**.

- 4.45 Water Quality This catchment comprises Residential and Other Roofs as well as Pedestrian Walkways (which will be assessed the same as a Residential Roof). Water Quality and treatment stages are discussed below.
- 4.46 CIRIA 763 SuDS Manual Table 26.2 shows Other Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via green-roofs and a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.3 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage. It should also be noted that some roof areas comprise green-roof which shall also provide some treatment of runoff.

System 7

- 4.47 "System 7" surface water drainage system comprises intensive and extensive green roofs, bio-retention swales, lined permeable paving and a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 20,682m² (assuming 100% impermeable). The maximum outfall rate for this catchment has been set at 124.2 I/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event. F
- 4.48 Permeable block paving attenuation (over two areas) covers a total area of 1121m² and provides surface water attenuation volume within the sub-base voids (usually 30% voids and no-fines). Flows from this permeable paving system are restricted using orifice-plate flow control chambers flows are then directed to/cascade to a geo-cellular attenuation device which also collects surface water run-off from 4636m² of pedestrian walkway area and 14,925m² roof area. lows from the geo-cellular attenuation device are restricted using a hydro-brake with outfall directed to the diverted 675dia adopted surface water sewer to the south of block K via a down-stream defender interceptor.
- 4.49 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the permeable paving and the geo-cellular storage device whilst restricting flows to 124.2 l/s. The hydraulic output data is contained in Appendix J and shows an attenuation volume of 51.0m³ (PP-05 30.6m³ + PP-06 20.4m³) in the permeable paving system and a volume of 591.2m³ in the geo-cellular storage device with a maximum outfall rate of 124.2 l/s is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized 475m² x 1.32m deep with 95% voids this provides a maximum attenuation volume of 595.65m³. The proposed Surface Water Drainage Strategy Drawing is contained in Appendix K.
- 4.50 Water Quality This catchment comprises Residential and Other Roofs as well as Pedestrian Walkways (which will be assessed the same as a Residential Roof). Water Quality and treatment stages are discussed below.

4.51 CIRIA 763 SuDS Manual Table 26.2 shows Other Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via green-roofs and a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.3 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage. It should also be noted that some roof areas comprise green-roof which shall also provide some treatment of runoff.

System 8

- 4.52 "System 8" surface water drainage system comprises intensive and extensive green roofs, bio-retention swales and a geo-cellular attenuation device. The impermeable area for this catchment has been calculated as: 3572m² (assuming 100% impermeable). The maximum outfall rate for this catchment has been set at 20.9 l/s to manage all storms up to and including the 1 in 100yr + 40% Climate Change Event. Flows from the geo-cellular attenuation device are restricted using a hydro-brake with outfall directed to the diverted 675dia adopted surface water sewer to the east of Block L via a down-stream defender interceptor.
- 4.53 WINDES MicroDrainage modelling software has been used to calculate the required attenuation volume for the geo-cellular storage device whilst restricting flows to 20.9 l/s. Any attenuation volume that may be provided in green roofs and bio-retention areas has not been allowed for to ensure a robust estimation of the required attenuation volumes to serve this catchment are made. The hydraulic output data is contained in **Appendix J** and shows an attenuation volume of 119.4m³ in the geo-cellular storage device with a maximum outfall rate of 20.9 l/s is required to manage a 1 in 100 year + 40% Climate Change event. This can be contained within a geo-cellular storage device sized 96.0m² x 1.32m with 95% voids this provides a maximum attenuation volume of 120.38m³. The proposed Surface Water Drainage Strategy Drawing is contained in **Appendix K**.
- 4.54 Water Quality This catchment comprises Residential and Other Roofs as well as Pedestrian Walkways (which will be assessed the same as a Residential Roof). Water Quality and treatment stages are discussed below.
- 4.55 CIRIA 763 SuDS Manual Table 26.2 shows Other Roofs have a Pollution Hazard Level of LOW. Resi Roofs will discharge directly to the adopted sewer via green-roofs and a downstream defender interceptor (a proprietary treatment system). Table 26.2 shows Resi Roofs have TSS of 0.3 Metals 0.2 and Hydrocarbons 0.05. Table 26.3, SuDS mitigation indices for discharges to surface waters, states that proprietary treatment systems must demonstrate that they can address each contaminate type to an acceptable level. It is therefore considered that an appropriate treatment device shall be selected at the detailed design stage. It should also be noted that some roof areas comprise green-roof which shall also provide some treatment of runoff.

Summary of Catchments and Proposed Outfall Rates

- 4.56 As discussed in para. 4.13, the total allowable outfall rate for the Anglia Square Regeneration site has been set at 242 l/s, which is a 57% reduction against the existing situation a significant betterment. Below is a breakdown of outfall rates for each catchment (System) and total:
 - System 1 Maximum surface water outfall rate of 5 l/s
 - System 2 Maximum surface water outfall rate of 5 l/s
 - System 3 Maximum surface water outfall rate of 22.4 l/s
 - System 4 Maximum surface water outfall rate of 35.7 l/s
 - System 5 Maximum surface water outfall rate of 20 l/s
 - System 6 Maximum surface water outfall rate of 10 l/s
 - System 7 S Maximum surface water outfall rate of 124.2 l/s
 - System 8 Maximum surface water outfall rate of 20.9 l/s

• All Systems – Total 243.2 I/s maximum outfall rate to manage all storms up to and including the 1:100yr + 40% Climate Change Event. The equivalent of 43% of the existing 1:1yr surface water run-off rate. This is a significant improvement to the existing situation. In addition, the existing drainage system does not benefit from any water treatment stages, whilst the proposed drainage strategy allows for water quality and treatment to meet the guidance within CIRIA SuDS Manual.

Attenuation Tank Alarm System

- 4.57 Due to the surface water flood risk within the city of Norwich, it is proposed that the attenuation tanks will have capacity sensors and alarms fitted within them which monitor how full they become during storm events. It is intended that an alarm system will sound once the tanks reach a certain capacity as this will mean the risk of flooding occurring has increased. As described above, attenuation tanks will likely collect run-off from both roof and hardstanding areas and it is not possible to prevent any exceedance surface water run-off flows from off-site from entering the proposed drainage systems. As such it is recommended that the alarm system triggers when the attenuation tank reaches 75% full. An analysis was carried out to determine the likely return period storm which would result in the tanks becoming 75% full, and it was determined that the tanks filled to 75% at around a 1in40 + 40% Climate Change Event.
- 4.58 Assuming the overland flows from offsite begin to fill up the onsite attenuation systems, the alarm would trigger should the tanks become 75% full. The alarm would trigger in the Anglia Square management office, and it would be the management's responsibility to distribute the warning to each of the ground floor and retail, commercial and leisure uses. This would allow them time to evacuate, safeguard and close their premises. The flood warning strategy has been discussed further the separate FRA document.

It is not practically possible to separate the drainage systems serving the hardstandings from the offsite overland flows, therefore the alarm and warning system will be used to manage the risk. It is also acknowledged that while the onsite drainage system has been designed to accommodate up to and including a 1 in 100 year (+40%CC) rainfall event, the impact of offsite flows entering some parts of the drainage system could reduce the capacity. However, it is not possible to quantify the overland flows from offsite and in any case, the onsite drainage system should not be designed to manage flows from offsite.

Exceedance Routes

4.59 In the event of a greater than 1 in 100 year (+40%CC) rainfall event occurring, the exceedance routes would be similar to those shown in the 1 in 100 year (+40%CC) velocity vector output from the surface water model. The maximum velocity vectors are shown in Figure 1.

Figure 1: Velocity vector output for 1 in 100 year (+40%CC) surface water event - taken from Royal HaskoningDHV Report

4.60 As discussed in the separate FRA, the hydraulic model assumes the public sewer system is almost at capacity and there is no drainage system within the site boundary. This would result in the overland flows collecting in the pedestrian walkways and passing through the site from north west to south east. The flows would leave the site at Magdalen Street on the western and south western boundary. It is noted that if the drainage system was at capacity, the site layout and sloping pedestrian walkways have been set out to ensure flowpaths are not blocked.

Sewer Diversions

- 4.61 As noted in Section 3, there are a number of Anglian Water sewers passing through the existing site. Anglian Water were consulted in 2018 for the previous scheme on the potential diversion of several of their sewers around the proposed development and it is understood that this will need to be considered in detail at a later stage through a diversion application, when information such as the foundation design is available. Anglian Water Drainage Engineer Darren Sewell provided some information on the requirements when diverting sewers within a new development site. This has been included at **Appendix L**. To summarise:
- 4.62 Any re-development areas falling within 3m of an existing public sewer but remaining only 'built near' an existing sewer, assuming the same clearance and access is available, would in principle be acceptable.
- 4.63 Any areas falling within 3m of the existing public sewer would need to comply with Part H4 Building Regulations in respect of 'building near' public sewers and Anglian Water criteria on the website.
- 4.64 Foundation design of the new buildings would need to be carefully considered to ensure that no loading would be transferred on a 45 degree 'angle of repose' onto the sewer.
- 4.65 The only area which would appear to require consideration of a formal diversion of a sewer would be the existing 675mm diameter surface water sewer and the existing 225mm foul sewer running immediately south of unit A1.01 (675mm surface water sewer close to MH 0453 to 0456 and 225mm foul sewer near to MH 0405 to 0408).
- 4.66 The above sewer may require a diversion, and the technicalities of this will be considered at a later stage. Anglian Water could consider formally devesting some sections of the existing public sewer which are no longer needed/fall beneath buildings (these need to be sewers serving only the existing site and no third parties). This means the Developer would apply to devest the sewer into their private ownership, and these sections of devested sewer could then be removed if no longer needed.
- 4.67 It would be necessary to consult Anglian Water further on the diverting and devesting of their public sewers across the site prior to any development taking place, to ensure that the issues raised in the email at **Appendix L** have been addressed.
- 4.68 It is expected that the advice provided by Anglian Water for the previous scheme is still relevant. It should be noted that Anglian Water have been contacted again to confirm this. Once their response has been received, this section of the report will be amended accordingly.

Foul Sewer Network

4.69 An Anglian Water capacity check was carried out for the previous scheme to determine whether there would be sufficient capacity within their existing foul network to accommodate the foul flows from the proposed development. This has been included in **Appendix M** and confirms that there was sufficient capacity in the existing foul network and no improvements would be needed to the network.

An updated Capacity Check was submitted to Anglian Water for this new scheme, once their response has been received, this section of the report will be amended accordingly.

5 Other Proposed SuDS Features

SuDS Features

- 5.1 The city center site gives opportunities for "urban types" of SuDS features to be incorporated. These features provide water quality and biodiversity betterments and it is proposed that wherever possible, these features will form the wider SuDS Drainage Strategy. The surface water drainage attenuation requirements for the site do not include any attenuation volumes that may be provided by the following features as such, as detailed design stage, it is possible that overall storage volumes could be reduced.
- 5.2 For now, the robust surface water drainage strategy as described in Section 4 demonstrates that the proposals can provide a significant betterment to the existing situation in terms of significantly reduced outfall rates and provision of attenuation features which manage all storm events up to and including the 1:100yr + Climate Change event.

Green Roofs

- 5.3 CIRIA SuDS Manual C753 Chapter 12 describes Green Roofs as follows:
- 5.4 "Green roofs area areas of living vegetation, installed on the top of buildings, for a range of reasons including visual benefit, ecological value, enhanced building performance and the reduction of surface water runoff. Types of green roof can be divided into two main categories:

-Extensive roofs, have low substrate depths (and therefore low loadings on the building structure), simple planting and low maintenance requirements; they tend not to be accessible.

-Intensive roofs (or roof gardens) have deeper substrated (and therefore highwe loadings on the building structure) that can support a wide variety of planting but which tend to require more intensive maintenance; they are usually accessible."

5.5 The proposals include for a number of garden roof terraces which are likely to comprise some areas of extensive and intensive type green roof as well as paved areas – these are currently detailed on Blocks A, D, M and K/L. Green roofs are also shown indicatively on Blocks E, E/F, F, G, J, J3 and H, it is expected that these will also comprise extensive and intensive green roof areas and paved areas. As described above, the drainage calculations in Section 4 do not account for any attenuation that may be available on green roof areas. However, as

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Page 24

TRANSPORT PLANNING III HIGHWAYS AND DRAINAGE III FLOOD RISK III TOPOGRAPHICAL SURVEYS Unit 23 The Mailings Stanstead Abbotts Hertfordshire SG12.8HG Tel 01920 \$71 777 e: contact@eastp.co.uk www.eastp.co.uk a general rule, it is assumed that green roofs are saturated when calculating a site's attenuation requirements anyhow.

5.6 Green roofs and Garden Roof Terraces will provide water quality and biodiversity benefits to the overall scheme.

Bio-Retention Swales

5.7 CIRIA SuDS Manual C753 Chapter 18 describes Bio-Retention Systems as follows:

"Bioretention systems (including rain gardens) are shallow landscaped depressions that can reduce run-off rates and vlumes, and treat pollution thrugh the use of engineered soils and vegetation. They are particularly effective in delivering interception and acan also provide: attractive landscape features that are self-irrigating and ertilising; habitat and biodiversity; and cooling of the micro-climate due to evapotranspiration."

- 5.8 Bio-Retention Swales are proposed for the planted areas in between Block E and Block H; in between Block F and Block G; to the west of Block J and to the east of Block H. It is anticipated that surface water run-off from adjacent hardstanding areas shall be directed to these swales which shall provide a first stage of attenuation and treatment of run-off. Overflow from these bio-retention swales shall be directed into the wider surface water drainage system, which ultimately outfalls to geo-cellular attenuation tanks.
- 5.9 Norwich County Council's Highway Team have been consulted regarding the provision of bio-retention swales along the western boundary of the site which would collect surface water run-off from Botolph Street and form part of the highway drainage network. Further swales to the north of the site, along Edward Street are also proposed. Initial feedback for the provision of these features is positive, however these off-site highway drainage proposals shall be subject to S278 Agreement, which will be detailed at a later stage.

Tree Planters

5.10 CIRIA SuDS Manual C753 Chapter 19 describes Tree Systems as follows:

"Trees and their planting structures provide benefits to surface water management in the following ways:

Transpiration – This is the process by which water, taken in from soil by tree roots, is evapourated through the pores or stomata on the surface of leaves. Trees draw large quantities of water from the soil, which can contribute to reducing run-off volumes.

Interception – Leaves, branches and trunk surfaces intercept (store and allow water to evapourate) and absorb rainfall, reducing the amount of water that reached the ground, delaying the onset and reducing the volume of run-off.

Increased infiltration – Root growth and decomposition increase soil infiltration capacity and rate, reducing runoff volues.

Phytoremediation – In the process of drawing water from the soil, trees also take up trace amounts of harmful chemicals, including metals, organs compunds, fuels and solvents that are present in the soil. Inside the tree, these chemicals can be transformed into less harmful substances, used as nutrients and/or storeg in roots, stems and leaves.

... Tree Planters are essentially bio-retention systems with trees in them, to enhance capacity and performance, and/or to deliver amenity and biodiversity benefits. They have similar functionality and design requiements to standard tree pits, but have open surace and generally a larger surface area, so their overall appearance is different"

5.11 Bio-Retention Tree Pits/Planters are proposed along the main thoroughfare crossing the site from west to east – in between Block A and Block H and also in between Block J3 and K/L. Like the bio-retention swales, it is anticipated that run-off from surrounding hardstanding areas will be directed o these tree pits with overflow directed to the wider surface water drainage system.

Pervious Pavements

5.12 CIRIA SuDS Manual C753 Chapter 20 describes Pervious Pavements as follows:

"Pervious surfaces, along with their associated substructures, are an efficient means of managing surface wate runoff close to its source – intercepting runoff, reducing the volume and frequency of runoff, and providing a treatment medium. Treatment processes that occur within the surface structure, the subsurface matrix and the geotextile layers include:

- -Filtration
- -Absorption
- -Biodegredation
- -Sedimentation"

5.13 Sections of Lined Permeable Block Paving Attenuation System are proposed across the site. The access road and parking areas for Block A in the north of the site; the forecourts in Block H, Block E/F and F; and the hardstanding areas to the south of and in between Blocks G and J will all comprise permeable paving attenuation.

6 Maintenance of Development Drainage

- 6.1 The responsibility for ongoing maintenance is under discussion with the necessary stakeholders and will be agreed during the determination period.
- 6.2 The proposed private surface water sewers, attenuation tanks and green/brown roofs should be regularly inspected and maintained to ensure they are effective throughout the lifetime of the development and do not become blocked or damaged over time.
- 6.3 It is proposed to install secondary (back-up) pumps within the pumping chamber for each of the pumps serving the proposed development. The secondary pumps will be programmed to start should the primary pump fail. Both pumps will have an alarm system in place which will be directed to a control panel within the management's office. In addition, an 'Alarm-Tel' feature will be put in place to monitor the state of operation of the various pumps. When a fault occurs it will automatically dial up to three telephone numbers with a pre-recorded message alerting the problem. In the unlikely event that both pumps fail and maintenance hasn't yet had a chance to resolve the problem, it should be noted that no residential dwelling is present at ground floor or basement level within the main Anglia Square development, so if minor flooding should occur the risk to people is low. Please note the 'Alarm-Tel' feature should be separate to the flood warning sensor on the attenuation tanks, as the attenuation tank reaching capacity could not be detected by the pump.

Maintenance Schedule	Required Action	Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance) and from silt traps prior to cells.	Monthly
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration as necessary	Annually
	Remove sediment from pre-treatment structures and/or internal forebays	Annually or as required
Remedial actions	Reconstruct soakaway if performance deteriorates or in the event of failure.	As required
	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year then annually
	Survey inside of tank for sediment build up and remove if necessary.	Every 5 years or as required
Monitoring		

6.4 Some maintenance details for elements of the drainage system from CIRIA SUDS Manual (C753) are included in Tables 6.1 and 6.2 below.

Table 6.1: Maintenance tasks for attenuation tanks (Source: CIRIA C753, The SuDS Manual)

Maintenance Schedule	Required Action	Frequency
Regular maintenance	Brushing and vacuuming.	Three times per year at end of winter, mid- summer, after autumn leaf fall, or as required based on site specific observations of clogging or manufacturer's recommendations.
Occasional maintenance	Stabilise and mow contributing and adjacent areas.	As required.
	Removal of weeds	As required
	Remediate any landscaping which, through vegetation maintenance of soil slip, has been raised to within 50mm of the level of the paving.	As required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance of a hazard to the user.	As required
Remedial actions	Rehabilitation of surface and upper sub-surface.	As required (if infiltration performance is reduced as a result of significant clogging.)
	Initial inspection	Monthly for 3 months after installation. 3 monthly, 48 hours after large storms.
Monitoring	Inspect for evidence of poor operation and/or weed growth. If required, take remedial action	Annually.
wontoning	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.
	Monitor inspection chambers.	Annually

Table 6.2: Maintenance tasks for permeable paving (Source: CIRIA C753, The SuDS Manual)

Manholes and Sewers

- 6.5 Manhole covers should be lifted each year to remove visible debris and check for blockages – it is suggested that this is undertaken every November after the heaviest leaf-fall has occurred.
- 6.6 Should a blockage occur at any time, it is advised to seek professional help to jet the drainage system to clean and clear the system.

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Page 29

Gutters and Downpipes

6.7 It is good practice to ensure that these are occasionally inspected to ensure they are in good order and free of leaves & debris. Once every 6 months should be sufficient.

Orifice Plate with Suitable Filter

6.8 It is advised that maintenance company take time to review the manufactures maintenance recommendations and follow accordingly, with regular inspections anticipated to be required every 3 months and after heavy rainfall events.

7 Conclusions

- 7.1 EAS have been commissioned by Weston Homes Ltd to prepare a Surface Water Drainage Strategy for the redevelopment of Anglia Square, Norwich, Norfolk.
- 7.2 A separate report, undertaken by others, deals with the flood risk assessment, hydraulic modelling study and impact assessment and should be read in conjunction with this report.
- 7.3 As described in Section 1, it is proposed to make a Hybrid planning application: Full Planning for Blocks, A, B, C, J3, K/L and M and Outline Planning for Blocks E, E/F, F, G, H and J.
- 7.4 The proposed surface water drainage strategy for the Hybrid Planning Application site has been based on sustainable principles with aim to provide a significant betterment to the existing situation. Currently the site does not benefit from any attenuation features and as such surface water run-off flows freely into the adopted sewer network, unrestricted and untreated.
- 7.5 The city center site gives opportunities for "urban types" of Sustainable Drainage Systems (SuDS) features to be incorporated. These features provide water quality and biodiversity betterments and it is proposed that wherever possible, these features will form the wider SuDS Drainage Strategy. The proposals include green roofs, bioretention swales, bioretention tree-pits, lined permeable paving and geo-cellular attenuation devices. These will improve water quality, biodiversity and amenity.
- 7.6 An assessment was undertaken to determine the existing surface water run-off from the site and what flow rate would likely enter the adopted sewer network. The assessment was discussed with Anglian Water and it was agreed that the proposed site should achieve a reduction of run-off to the adopted network to a maximum of 242 l/s to manage all storms up to and including the 1:100yr + 40% Climate Change Event. This will be the equivalent of 43% of the existing 1:1yr surface water run-off rate, a significant reduction.
- 7.7 The Hybrid site layout precludes the option for separating drainage for Outline areas from Full-Planning areas. Open spaces will be utilised for locating attenuation devices and in some cases, these areas will serve both Outline and Full-Planning development areas. Where possible, drainage Systems serve only Outline or only Full-Planning areas.
- 7.8 The development parcels have been split into 8no. drainage catchments. Each catchment has a restricted outfall to the adopted surface water sewer network and attenuation designed to accommodate a 1:100yr + Climate Change Storm Event. Suitable water treatment stages, in line with CIRIA SuDS Manual are proposed and will provide an improvement to the existing situation, where waters enter the adopted sewer network, untreated.
- 7.9 Due to the surface water flood risk within the city of Norwich, it is proposed that the attenuation tanks will have capacity sensors and alarms fitted within them which monitor how full they become during storm events. The attenuation tanks will likely collect run-off from both roof and hardstanding areas and it is not possible to prevent any exceedance surface water run-off flows from off-site from entering the proposed drainage systems. The alarm would trigger in the Anglia Square management office, and it would be the management's responsibility to distribute the warning to each of the ground floor and retail, commercial and leisure uses. This would allow them time to evacuate, safeguard and close their premises. The flood warning strategy has been discussed further the separate FRA document

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Page 31

TRANSPORT PLANNING III HIGHWAYS AND DRAINAGE III FLOOD RISK III TOPOGRAPHICAL SURVEYS Unit 23 The Mailings Stanstead Abbotts Hertfordshire SG12 8HG Tel 01920 871 777 e: contact@eastp.co.uk www.eastp.co.uk

- 7.10 Maintenance of the attenuation features will remain the responsibility of the site owner or an appointed management company, and will not be offered for adoption. The Anglian Water sewers that pass through the site will remain the responsibility of Anglian Water
- 7.11 The proposed surface water drainage strategy, covering 8no catchments will significantly reduce surface water runoff, provide significant attenuation volumes and improve water quality, biodiversity and amenity.

EAS

8 Appendices

Appendix: A – Location Plan 34	
Appendix: B – Proposed Development Plans	35
Appendix: C – Topographical Survey 36	
Appendix: D – Thames Water Sewer Mapping	37
Appendix: E – Existing Run-off Rates 38	
Appendix: F – Existing Run-off Catchments39	
Appendix: G – Indicative Sewer Diversions 40	
Appendix: H – Greenfield Run-off Rates 41	
Appendix: I – Anglian Water Approval In Principle	42
Appendix J – Hydraulic Model Outputs 43	
Appendix K – Surface Water Drainage Layout	44
Appendix L – Anglian Water Diversion Information	45
Appendix M – Anglian Water Foul Water Capacity Check	46

Contractors and consultants are not to scale dimensions from this drawing						
Reproduced by permission of Ordnance Survey on behalf of HMSO © CROWN COPYRIGHT and database right 2008 All rights reserved Ordnance Survey Licence number AL 1000 22432 Broadway Malyan Limited						
The survey information shown on this drawing is based on a topographical survey prepared by a third party and Broadway Malyan Limited accept no responsibility for the accuracy or completeness of the survey.						
Drawings to be read in conjunction with the associated Design & Access Statement, associated consultant desin team documents & reports and landscape information						
Landscape shown is for illustrative purposes only. For detailed landscape information, please refer to the landscape information & documents.						
0m 62.5m 125m						
N						

General Notes

All figures and areas are approximate only and subject to statutory constraints, detail design & design development

Structural Design: Subject to structural input & coordination

Services Design: Subject to services input & coordination Fire Strategy: Subject to fire input & coordination

Application Boundary

Land Ownerd by CT to be subject to separate application for part of the Mobility Hub

D0-1 31.03.22 Issued For Planning Revision Date Drawn By Description

BroadwayMalyan[™]

4 Pear Place London SE1 8BT

T: +44 (0)20 7261 4200 F: +44 (0)20 7261 4300 E: Lon@BroadwayMalyan.co

www.BroadwayMalyan.com

^{Client} Weston Homes

Anglia Square Norwich

Hybrid Application - Location Plan on Existing OS Base

 Status

 Scale
 Drawn By
 Dale

 1:1250@A1
 BM
 31.03.22

 Job Number
 Drawing Number
 Revision

 35301
 ZZ-00-DR-A-01-1000
 Do-1

Appendix: B – Proposed Development Plans

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

General Notes

All figures and areas are approximate only and subject to statutory constraints, detail design & design development Structural Design: Subject to structural input & coordination Services Design: Subject to services input & coordination Fire Strategy: Subject to fire input & coordination

- Application Boundary
- Land Ownerd by CT to be subject to separate application for part of the Mobility Hub
- Existing Buildings
- Site B Area 0.27 ha
- Site C Area 0.13 ha
- Applcation Boundary (All Blocks) and public realm - Area 4.65ha
- Detailed Application (Block A,B,C,D,M,KL & J3) and public realm - Area 2.25ha

D0-1 31.03.22 Issued For Planning Revision Date Drawn By Description

BroadwayMalyan™

4 Pear Place London SE1 8BT

T: +44 (0)20 7261 4200 F: +44 (0)20 7261 4300 E: Lon@BroadwayMalya

www.BroadwayMalyan.com

Client Weston Homes

Proje Anglia Square Norwich

Descripti Hybrid Application Site Plan Block Plan on Proposed layout

Status

For Planning Scale Drawn By 1:500@A1 BM Date 31.03.22 Job Number Drawing Numbe 35301 ZZ-00-DR-A-01-0300 D0-1

Appendix: C – Topographical Survey

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

SERVICE LEGEND

FOUL DRAINAGE	
SURFACE WATER DRAINAGE	>
WATER	
GAS	
ELECTRICITY	
TELEPHONE	
CABLE TV	
TRAFFIC SIGNAL	
OIL	
UNKNOWN SERVICE	
NEW DETAIL	
UNDERGROUND CHAMBER	

Appendix: D – Thames Water Sewer Mapping

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

louisa.wade@eastp.co.uk

€

Pumping Station

Anglia Square Norwic

This plan is provided by Anglian Water pursuant its obligations under the Water Industry Act 1991 sections 198 or 199. It must be used in conjunction with any search results attached. The information on this plan is based on data currently recorded but position must be regarded as approximate. Service pipes, private service pipes, private accepted by Anglian Water for any error or inaccuracy or omission, including the failure to accurately record, or record at all, the location of any water main, discharge pipe, sewer or disposal main or any item of apparatus. This information is valid for the date printed. This plan is produced by Anglian Water Services of the map data or further copies is not permitted. This notice is not intended to exclude or restrict liability for death or personal injury resulting from negligence.

Decommissioned Sewer (Colour denotes effluent type)

	-
love every drop	
anglianwater o	~

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
0002	623050	309027	С	2.96	-0.98	3.94
0008	623008	309060	С	3.23	0.28	2.95
0010	623023	309019	С	2.94	-0.87	3.81
0101	623023	309178	С	4	1.85	2.15
0104	623025	309161	С	3.95	1.74	2.21
0105	623036	309101	С	3.43	0.14	3.29
0107	623073	309110	С	3.64	2.28	1.36
0201	623015	309237	С	4.34	2.12	2.22
0202	623010	309274	С	-	-	-
0604	623030	309667	С	-	-	2.4
1006	623105	309035	С	2.71	-1.26	3.97
1015	623192	309077	С	-	-	-
1112	623120	309178	С	3.874	1.179	2.695
1114	623189	309114	С	2.742	1.072	1.67
1201	623196	309247	С	3.13	1.38	1.75
1203	623162	309240	С	3.147	1.647	1.5
1204	623103	309267	С	3.55	1.18	2.37
1205	623147	309279	С	3.38	1.17	2.21
1213	623155	309280	С	3.347	1.747	1.6
1214	623169	309204	С	-	-	-
1215	623159	309280	С	-	-	-
1313	623160	309375	С	-	-	-
1407	623164	309465	С	-	-	-
1504	623169	309561	С	-	-	-
1505	623169	309559	С	5.342	1.407	3.935
2003	623246	309077	С	-	-	4.3
2017	623248	309069	C	-	-	-
2018	623248	309047	C	-	•	-
2019	623206	309033	C	3.107	-1.663	4.77
2101	623281	309151	C	2.47	1	1.47
2103	623255	309184	C	2.99	1.86	1.13
2104	623261	309115	C	•	-	3.95
2201	623212	309251	C	3.28	0.13	3.15
2203	623269	309260	C	-	-	3.275
2205	623294	309270	C	3.02	1.29	1./3
2207	623298	309210		-	-	3.1
2208	623207	309272	C	-	-	-
2209	623223	309253		-	-	-
2301	623230	309388		3.63	1.64	1.99
2305	623256	309366		3.4	2.21	1.19
2308	623244	309350	C	3.20	1.24	2.02
2402	623202	309409	C	3.40	1.1	2.30
2403	623210	200421	C	3.00	1.00	2.22
2404	623226	309431	C	3.81	1.59	2.20
2403	623280	309471	C	4 32	2.09	2.02
2407	623275	309471	C	4.32	-	2.25
2502	623285	309527	C	5.82	2 93	2.89
2502	623273	309540	C	6.32	4 95	1 37
2505	623282	309594	C	-	-	-
2506	623229	309537	C	-	-	-
3001	623313	309032	C	2.21	0.6	1.61
3004	623370	309098	C	2.79	0.24	2.55
3006	623394	309092	C	3.5	1.97	1.53
3007	623351	309067	C	-	-	-
3101	623307	309165	C	2.449	0.349	2.1
3102	623319	309175	C	2.406	0.456	1.95
3106	623372	309187	С	-	-	3.48
3107	623337	309129	С	1.76	0.28	1.48
3109	623389	309118	С	-	-	-
3305	623393	309368	С	2.81	0.04	2.77
3306	623387	309387	С	3.16	0.32	2.84
3401	623327	309425	С	3.4	0.67	2.73
3404	623376	309422	С	3.58	0.54	3.04
3405	623318	309407	С	3.47	1.79	1.68
3406	623381	309405	С	3.31	0.45	2.86
3407	623362	309407	С	-	-	2.02
3506	623383	309536	С	-	-	-
3602	623321	309637	С	-	-	-
3611	623383	309669	С	-	-	-
4002	622496	309090	С	-	-	-
4002	623413	309054	С	4.17	2.26	1.91
4005	623430	309037	С	4.96	2.08	2.88
4108	623405	309104	С	3.44	1.23	2.21
4109	623422	309107	С	3.73	2.25	1.48
4110	623416	309115	C	3.36	1.78	1.58
4111	623452	309112	C	3.837	-	-
4201	623410	309220	C	-	-	3.275
4301	623455	309386	C	-	-	-
4509	623455	309579	C	8.19	6.92	1.27
4510	623497	309538	C	-	-	1.7
4511	623471	309527	C	-	-	-
4512	623494	309522		-	-	0.62
4513	623490	309568		-	-	-
5101	023506	309141		-	-	3.125
5405	623513	309401		-	-	-
5507	622598	309555		-	-	δ
5510	022598	309537		-	-	-
5510 5510	022084	303530	C	-	-	4.01
551U 5511	023501 623504	300565	C	-	-	
5011 5609	023504	303262		-	-	1.42
5000 5612	0220/3	300620	C	-	-	2.3
501Z 6304	022003	303620	C	-	-	1.02 2.62
6351	022030	300300	C	-	-	2.02 1.82
6401	022004	309301	C	-	-	1.02
6402	022010	303434 300402	C	-	-	3.2 3.92
0402 6506	622664	3007403	C	-	-	3.02 1.07
6507	622624	300001	C	-	-	1
6508	622660	309032	C C	-	-	2 845
6605	622680	309658	C	-	-	1.9
6608	622634	309659	с С	-	-	1.67
6612	622651	309618	С	-	-	1.35

Manhole	Reference	Easting	Northing	Liquid Typ
6613 6615		622670 622699	309643 309655	C C
6622		622655	309668	С
7001		622773	309039	C
7201		622799	309154	C
7202		622765	309219	С
7203		622791	309228	С
7210		622706	309269	C C
7302		622732	309351	C
7303		622737	309356	С
7401		622758	309486	C
7402		622761	309469	C
7502		622750	309506	С
7606		622783	309629	C
7611		622793	309607	C
8003		622851	309031	С
8004		622832	309063	C
8103		622872	309129	C
8203		622889	309284	C
8302		622898	309366	C
8303 8402		622892 622845	309327	C
8403		622805	309417	C
8404		622896	309451	С
8502		622826	309579	C
8503 8504		622857	309585	C
8508		622842	309544	С
8601		622891	309623	С
8606 8607		622899 622819	309648	C
8612		622817	309622	C
8613		622815	309623	С
9101		622981	309175	С
9102 9103		622990 622995	309126	C
9104		622990	309108	C
9203		622972	309226	С
9207		622939 622974	309245	C
9306		622985	309304	C
9424		622941	309494	С
9426		622917	309445	C
94 <i>21</i> 9501		622906	309403	C
9502		622929	309545	С
9503		622993	309573	C
9507 9508		622995 622997	309546	C
9509		622955	309591	C
9510		622964	309593	С
9511 9512		622975 622986	309595	C
9515		622949	309535	C
9516		622941	309587	С
9601 9602		622900	309629	C
9602 9605		622925	309601	C
9606		622977	309661	С
9610		622904	309648	С
0003		623032	309020	F
0301		623059	309354	F
0302		623080	309355	F
0303		623060 623060	309310	F
0401		623099	309460	F
0402		623066	309471	F
0403		623025	309487	F
0404		623008	309493	F
0406		623033	309408	F
0407		623035	309401	F
0408		623056 623001	309401	F
0603		623029	309669	F
0606		623046	309644	F
0607		623086	309645	F
0617		623042 623086	309644	F
0619		623099	309645	F
1001		623158	309073	F
1003		623184 623118	309067	F
1014		623190	309074	F
1107		623171	309190	F
1211		623153	309285	F
1303		o∠3143 623107	309320	F
1307		623119	309355	F
1308		623131	309356	F
1309		623160	309343	F
1312		623152	309346	F
1401		623118	309453	F
1403		623156	309429	F
1502		623163	309451	F

vpe	Cover Level	Invert Level	Depth to Invert
	-	-	1.63
	-	-	1.4∠ -
	-	-	2.72
	-	-	2.58 2.71
	-	-	1.74
	-	-	2.83
	-	-	1.37
	-	-	1.43
	-	-	1.5 2.69
	-	-	2.015
	-	-	1.98 3.56
	10.756	8.12	2.636
	9.754	7.196	2.558 0.83
	-	-	1.7
	-	-	1.92
	4.19	0.94	3.25
	-	-	2.21
	-	-	2.565 2.16
	-	-	2.24
	-	-	2 2.6
	7.483	3.292	4.191
	-	- 3,292	2.011 4.191
	-	-	1.93
	-	-	0.84
	-	-	0.915
	-	-	-
	-	-	- 2.51
	3.65	1.26	2.39
	3.6	1.04	2.56
	4.29	1.82	2.47
	4.76	2.73	2.03
	-	-	2.77 2.87
	-	-	2.745
	-	-	2.92 3.02
	-	-	1.04
	-	-	0.915
	- 5.15	3.49	1.66
	5.09	3.31	1.78
	-	-	- 0.8
	-	-	-
	-	-	-
	-	-	0.5
	- 6 248	- 4 328	0.99
	-	-	1.525
	6.111	4.023	2.088
	- 2.91	-2.59	5.5
	2.89	-0.28	3.17
	3.99 4	0.33 0.22	3.66 3.78
	3	1.36	1.64
	3.23 4.22	1.45 1.41	1.78 2.81
	4.41	1.72	2.69
	4.65 4 91	2.04	2.61
	4.5	1.92	2.58
	3.98	1.36	2.62
	3.97 3.96	0.9	2.03 3.06
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	-	-	-
	2.81	2.04	0.77
	2.50 2.59	-2.02	4.73
	2.56	0.8	1.76
	2.826 3.42	-0.934 0.59	3.76 2.83
	3.47	0.99	2.48
	3.91 3.61	-0.02	3.93
	-	-	3.35
	3.18	-0.2	3.38
	- 3.42	- 1.81	ა.ა 1.61
	4.1	1.25	2.85
	3.75 4.07	0.25 1.96	3.5 2.11
	4.558	1.203	3.355

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
1503	623163	309559	F	4.558	1.203	3.355
1614	623161	309637	F	-	-	-
1617	623116	309645	F	7.333	5.473	1.86
2004	623241	309035	F	2.946	-3.864	6.81
2007	623206	309020	F	3.35	1.76	1.59
2008	623204	309029	F	3.01	1.62	1.39
2303	623249	309333	F	3.22	1.1	2.12
2304	623265	309338	F	3.37	1.57	1.8
2307	623257	309307	F	2.917	0.918	1.999
2504	623287	309589	F	-	-	2.5
3008	623393	309072	F	-	-	-
3010	623380	309064	F	-	-	-
3011	623364	309049	, F	-	-	-
3012	623358	309040	F	-	-	-
3013	623352	309024	F	-	-	-
3014	623351	309017	F	-	-	-
3302	623371	309359	F	2.57	-0.08	2.65
3501	623391	309509	F	-	-	2.1
3502	623332	309534	F	-	-	2.2
3503	623309	309556	F	-	-	2.3
3504	623395	309520	F	-	-	-
3505	623326	309587	F	-	-	-
3601	623306	309624	F	-	-	2.5
3603	623334	309655	F	-	-	2.4
3604	623301	309629	F	-	-	1.2
3607	023300	309615	r F	-	-	-
3608	023350	309635	F	-	-	-
3600	020000	300603	F	-	-	-
4001	622405	309003	' F	-	-	6 045
4003	623433	309080	F	3.95	0.15	3.8
4101	623421	309189	F	-	-	3.455
4401	623479	309476	F	-	-	2.86
4402	623469	309476	F	-	-	2.8
4501	623412	309565	F	-	-	-
4502	623446	309557	F	-	-	-
4503	623457	309594	F	-	-	1.52
4504	623408	309588	F	-	-	-
4505	623413	309587	F	-	-	-
4506	623420	309585	F	-	-	-
4507	623438	309513	F	-	-	-
4508	623445	309538	F	-	-	-
4602	623482	309633	F	-	-	-
4603	623402	309605	F	-	-	-
4604	623406	309670	F	-	-	-
4605	623406	309667	r c	-	- 1.52	-
5004	622537	309020		3.12	-1.55	4.00
5201	622581	309079	F	-	-1.95	-
5301	622563	309365	F	-	-	
5302	622564	309357	F	-	-	-
5401	622547	309454	F	-	-	-
5402	622563	309412	F	-	-	-
5409	623516	309464	F	-	-	3.265
5501	622529	309569	F	3.08	-	-
5502	622542	309519	F	3.69	-	-
5507	623516	309585	F	-	-	-
5511	622586	309593	F	-	-	8.36
5512	622575	309590	F	-	-	3.886
5513	622570	309586	F	-	-	1.855
5514	622580	309555	F	-	-	0.915
5515	622549	309525	F	-	-	-
5607	622563	309647	Г С	-	-	9.13
6000	622669	309020	r F	4,042	2,39	1.652
6001	622684	309069	F	4.125	2.591	1.534
6002	622658	309054	F	4.3	2.792	1.508
6003	622700	309044	F	4.117	2.407	1.71
6102	622695	309188	F	-	-	3.4
6103	622699	309193	F	-	-	6.4
6104	622698	309110	F	-	-	1.14
6105	622673	309147	F	-	1.5	-
6106	622660	309127	F	-	1.75	-
6107	622643	309126	F	-	1.95	-
6108	622666	309159	F	-	1.8	-
6109	622667	309183	F	-	2.2	-
0110 6201	022050	309121	r c	4	1.900	2.034
6204	022007	309200	F	-	1.411	-
0204 6205	022004	303202	F	-	-	-
6302	622634	309356	r F	-	-	5.82
6404	622614	309454	F	-	-	7
6504	622609	309558	F	-	-	9.45
7002	622744	309099	F	-	-	3.66
7005	622751	309098	F	-	-	6.8
7007	622756	309072	F	3.583	0.51	3.073
7008	622752	309070	F	3.603	2.015	1.588
7009	622727	309058	F	4.04	2.202	1.838
7010	622711	309024	F	4.15	2.557	1.593
7101	622708	309166	F	-	-0.04	-
7104	622720	309122	F	-	-	1.17
7105	622703	309194	F	-	-	2.7
7106	622799	309115	F	-	-	3
/108	622703	309164	F	-	1.1	-
7205	622/12	309284	F	-	-	1.845
7206	622782	309285	F	-	-	-
7404	022/53	309285	r F	-	-	1.035
7405	022130 622701	309477	ı F	-	-	-
7406	622720	309473	F	-	-	-
7501	622718	309599	F	-	-	11.75
7602	622773	309641	F	10.67	8	2.67

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
8001	622884	309059	F	4.27	0.55	3.72
8102	622874	309170	F	4.32	1.71	2.61
8104	622811	309104	F	-	-	1.3
8204	622881	309211	F	-	-	-
8405	622862	309430	F	-	-	-
8509	622892	309570	F	-	-	-
8604	622816	309660	F	-	-	-
8611	622812	309662	F	10.267	7.147	3.12
8614	622811	309625	F	-	-	-
8615	622824	309616	F	-	-	-
8616	622818	309623	F	-	-	-
9001	622961	309099	F	3.87	1.77	2.1
9002	622979	309048	F	3.46	1.44	2.02
9202	622969	309245	r c	-	-	2.0
9200	622900	309292	г Г	-	-	2.105
9209	622986	309290	F	-	-	-
9301	622967	309310	F	4.37	2.25	2.12
9401	622973	309428	F	-	-	2.36
9414	622911	309475	F	-	-	2.845
9423	622945	309444	F	-	-	2.59
9425	622921	309458	F	-	-	2.615
9428	622929	309471	F	-	-	-
9429	622935	309475	F	-	-	-
9504	622992	309546	F	-	-	-
9513	622944	309573	F	-	-	-
9514	622905	309577	F	-	-	-
9607	622998	309664	F	5.447	3.487	1.96
9608	622902	309655	F	-	•	1.6
9609	622922	309660	F	6.1	0.176	5.924
9613	622935	309623	F	-	-	-
9014	622948	309627	г с	-	-	0.5
0100 0251	622000	309630	Г Q	-	-	-
0251	623009	309203	S	3.64	2.00 2.03	1.42
0253	623059	309294	S	-	2.03	-
0351	623078	309356	S	3 97	1.07	29
0352	623062	309309	S	3.05	1.74	1.31
0353	623062	309303	S	3.28	1.83	1.45
0354	623061	309356	S	4.01	1.03	2.98
0451	623036	309480	S	4.57	2.02	2.55
0452	623004	309492	S	5.01	2.2	2.81
0453	623005	309417	S	4.49	1.32	3.17
0454	623035	309410	S	3.95	1.21	2.74
0455	623046	309404	S	3.98	1.08	2.9
0456	623057	309404	S	3.96	1.08	2.88
0457	623087	309499	S	3.99	2.46	1.53
0458	623095	309478	S	4.19	2.23	1.96
0459	623097	309459	S	4.23	1.85	2.38
1051	623153	309091	S	2.83	1.69	1.14
1057	623187	309075	S	-	-	-
1153	623168	309191	S	-	-	2.49
1251	623156	309286	S	3.51	-0.55	4.06
1252	623103	309279	S	-	7.21	-
1351	623157	309346	S	3.23	0.79	2.44
1352	623133	309357	S S	3.00	1.04	2.04
1355	623145	309357	с с	- 3 /0	-	2.45
1357	623156	309388	S	-	-0.20	-
1451	623118	309451	S	4.09	1.64	2.45
1452	623158	309447	S	-	-	-
1453	623154	309427	S	3.78	1.02	2.76
1454	623168	309430	S	-	-	-
1459	623168	309427	S	3.8	2.16	1.64
1553	623167	309558	S	-	-	-
1651	623150	309668	S	-	-	5.73
2051	623206	309030	S	-	-	-
2351	623263	309338	S	-	-	1.93
2352	623207	309309	S	8.37	7.18	1.19
2354	623272	309315	S	3.09	1.29	1.8
2355	623250	309387	S	3.65	2.32	1.33
2361	623258	309307	S	2.918	1.168	1.75
2362	623250	309334	5	-	-	1.93
2303	023205 622274	300420	3 9	-	4.11	-
2452	623214	300520	S	-	-	- 2.2
3050	623300	309009	S	-	-	-
3051	623378	309064	S	-	-	-
3052	623364	309051	S	-	-	_
3053	623355	309039	S	-	-	-
3054	623350	309025	S	-	-	-
3055	623349	309018	S	-	-	-
3351	623326	309343	S	3.29	1.24	2.05
3352	623321	309343	S	3.38	1.56	1.82
3353	623370	309348	S	2.54	0.65	1.89
3357	623382	309316	S	2.801	0.251	2.55
3358	623368	309351	S	-	-	-
3359	623365	309359	S	-	-	-
3360	623338	309352	S	-	-	-
3361	623346	309384	S	-	-	1.93
3457	623366	309424	S	-	-	3.04
3458	623386	309493	S	-	-	-
3551	623387	309506	S	-	-	2.1
3552	623330	309532	S	-	-	1.8
3003 2554	023305 622202	309554	১ ৫	-	-	1.9
3555 3555	622224	309521	3 9	-	-	-
3000 3651	023324 623202	309590	ა ვ	-	-	- 21
3652	623303	303024	S	-	-	2.1
3653	623359	309654	S	-	-	-
4051	623435	309080	S	3.97	1.56	2.41
4052	623433	309042	S	4.9	4,9	
4157	623423	309190	S	-	-	2.77
			-	1		

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
4453	623468	309472	S	-	-	2.7
4551	623409	309568	S	-	-	-
4552	623449	309558	S	-	-	-
4651	623413	309644	S	-	-	-
4652	623468	309633	S	-	-	-
5051	622516	309094	S	3.62	1.01	2.61
5059	622506	309077	S	-	-	3.075
5151	622555	309171	S	4.32	1.38	2.94
5252	622521	309200	S S	-	- 1 53	2.4
5555	622569	309584	S	-	-	-
5556	622558	309579	S	-	-	1.168
6051	622647	309029	S	3.865	2.485	1.38
6052	622678	309021	S	4.255	1	3.255
6053	622699	309042	S	4.15	1.245	2.905
6054	622694	309051	S	4.022	1.333	2.689
6055	622667	309095	S	4.04	1.834	2.206
6151	622671	309083	S	4.319	2.034	-
6152	622659	309129	S	-	2.05	-
6153	622643	309128	S	-	2.2	-
6154	622664	309160	S	-	2.1	-
6155	622665	309185	S	-	2.5	-
6156	622698	309187	S	-	-	1.2
6251	622666	309241	S	-	-	1.83
6252	622660	309259	S	-	1.548	-
0253 6254	622657	309260	১ ৎ	-	1.829	-
6254 6551	622611	309258	S S	-	2.999	-
6552	622688	309500	S	3.29 10 73	2.49 7.65	3.08
6652	622644	309634	S	-	-	1.27
7050	622702	309038	S	4.19	1.449	2.741
7051	622712	309020	S	4.12	1.671	2.449
7052	622725	309056	S	4.102	1.861	2.241
7053	622749	309067	S	3.721	2.26	1.461
7152	622710	309169	S	-	1.3	-
7153	622703	309166	S	-	1.4	-
7154	622737	309117	S	-	-	2.9
7155	622748	309094	S	-	-	-
7156	622771	309107	S	-	-	-
7157	622798	309118	S	-	-	-
7251	622714	309285	S	-	-	1.575
7252	622707	309259	5 C	-	-	-
7253	622745	309258	S	-	1.734	-
7351	622780	309326	S	-	-	1.83
7352	622745	309333	S	-	-	1.6
7354	622797	309321	S	-	-	1.3
7451	622760	309476	S	-	-	1.15
7652	622779	309637	S	-	-	3.81
7653	622788	309632	S	-	-	7.77
8151	622873	309169	S	4.32	1.96	2.36
8152	622802	309153	S	-	-	-
8153	622861	309166	S	-	-	-
8253	622833	309254	S	-	2.548	-
8254	622879	309213	S	-	-	-
8255	622882	309233	S	-	-	-
8452	622807	309490	S C	-	-	1.38
8653	622810	309662	S S	- 10.267	- 7 447	- 2.82
9252	622971	309247	S	-	-	2.25
9253	622970	309284	S	-	-	3.99
9254	622973	309261	S	-	-	-
9255	622973	309295	S	-	-	-
9256	622982	309292	S	-	-	-
9351	622973	309312	S	-	-	-
9459	622975	309422	S	-	-	3
9460	622930	309452	S	-	-	3.15
9462	622912	309477	S	-	-	3.48
9465	622991	309411	S	-	-	-

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert

Appendix: E – Existing Run-off Rates

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Q = CiA where C = PIMP

PR

PIMP = Percentage of impervious area to total area PR = Percentage Runoff C=1 C

С	1	
Rainfall intensity (i)	50	mm/hr
	0.05	m/hr
	0.0000139	m/s
Site size (A)	40712	m2
Q for existing site	565.44	l/s

Ref: Butler, D and Davies, J. (2006), Urban Drainage, 2nd ed, SPON.

Appendix: F – Existing Run-off Catchments

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Appendix: G – Indicative Sewer Diversions

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Appendix: H – Greenfield Run-off Rates

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

EAS		Page 1
Unit 108 The Maltings		
Stanstead Abbotts		
Hertfordshire SG12 8HG		Therefore a
Date 19/02/2018 10:04	Designed by Maz	Dramace
File	Checked by	
Micro Drainage	Source Control 2013.1.1	

ICP SUDS Mean Annual Flood

Input

Return	Period	(y∈	ears)	100		Soil	0.15	50
	Ar	rea	(ha)	1.000		Urban	0.00	00
	SP	AR	(mm)	614	Region	Number	Region	5

Results 1/s

QBAR Rural 0.3 QBAR Urban 0.3 Q100 years 1.2 Q1 year 0.3 Q30 years 0.8 Q100 years 1.2

©1982-2013 Micro Drainage Ltd

Appendix: I – Anglian Water Approval In Principle

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

Louisa Wade

From:	Anglian Water <planningliaison@anglianwater.co.uk></planningliaison@anglianwater.co.uk>
Sent:	21 April 2017 15:57
То:	Louisa Wade
Subject:	00021192 St Crispins Road, NORWICH - Mancroft Response
Follow Up Flag:	Follow up
Flag Status:	Flagged

Dear Louisa Wade

RE: St Crispins Road, NORWICH - Mancroft .

Thank you for your email.

Anglian Water's surface water management policy is as follows: Where a brownfield site is being demolished, the site should be treated as if it was greenfield. no historic right of connection will exist and any sewer connections should be treated afresh. Where this is not practical Anglian Water would assess the roof area of the former development site and subject to capacity, permit the 1 in 1 year calculated rate to discharge to the public surface water system.

Flows in excess of any agreed rate will need to be stored on site to the environment Agency's requirements for all events up to the 1 in 100 year plus climate change rate, unless a greater event has been stipulated

Subject to evidence being provided to confirm that 27,613m2 of hard standing area currently drains to the Anglian Water surface water sewers, we would permit the calculated 1 in 1 year discharge rate of 242l/s. Discharge should be to the same surface water sewers as existing.

Evidence in the form of CCTV survey /drainage layout plan to confirm the hard standing area and current discharge locations can be provided at detailed design stage when applying to connect.

Should you have any questions relating to this please contact 0345 0265 458. Your reference for this enquiry is 00021192.

Kind Regards Growth and Planning Services Team Appendix J – Hydraulic Model Outputs

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

EAS Transport Planning		Page 1
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-01	Micro
Date 11/03/2022 13:08	Designed by JPS	Dcainago
File SY-01.casx	Checked by	brainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for PP-01.srcx

Upstream Outflow To Overflow To Structures

(None) SY-01.srcx SY-01.srcx

Half Drain Time : 56 minutes.

	Sto: Ever	rm ht	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
15	min	Summer	5.193	0.093	0.0	2.5	2.5	12.1	Flood Ris	sk
30	min	Summer	5.212	0.112	0.0	3.3	3.3	15.8	Flood Ris	sk
60	min	Summer	5.223	0.123	0.0	3.9	3.9	18.0	Flood Ris	sk
120	min	Summer	5.228	0.128	0.0	4.1	4.1	18.9	Flood Ris	sk
180	min	Summer	5.226	0.126	0.0	4.0	4.0	18.6	Flood Ris	sk
240	min	Summer	5.223	0.123	0.0	3.9	3.9	17.9	Flood Ris	sk
360	min	Summer	5.215	0.115	0.0	3.5	3.5	16.4	Flood Ris	sk
480	min	Summer	5.209	0.109	0.0	3.1	3.1	15.1	Flood Ris	sk
600	min	Summer	5.203	0.103	0.0	2.7	2.7	13.9	Flood Ris	sk
720	min	Summer	5.195	0.095	0.0	2.6	2.6	12.5	Flood Ris	sk
960	min	Summer	5.185	0.085	0.0	2.4	2.4	10.3	Flood Ris	sk
1440	min	Summer	5.171	0.071	0.0	2.0	2.0	7.7	Flood Ris	sk
2160	min	Summer	5.160	0.060	0.0	1.6	1.6	5.5	Flood Ris	sk
2880	min	Summer	5.154	0.054	0.0	1.4	1.4	4.4	Flood Ris	sk
4320	min	Summer	5.147	0.047	0.0	1.0	1.0	3.4	Flood Ris	sk
5760	min	Summer	5.142	0.042	0.0	0.8	0.8	2.6	Flood Ris	sk
7200	min	Summer	5.138	0.038	0.0	0.7	0.7	2.2	Flood Ris	sk

	Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Time-Peak (mins)
15	min	Summer	138.874	0.0	13.9	23
30	min	Summer	90.946	0.0	19.2	34
60	min	Summer	56.713	0.0	24.7	54
120	min	Summer	34.162	0.0	30.3	86
180	min	Summer	25.057	0.0	33.7	120
240	min	Summer	19.992	0.0	35.9	154
360	min	Summer	14.500	0.0	39.3	220
480	min	Summer	11.545	0.0	41.8	284
600	min	Summer	9.667	0.0	43.7	352
720	min	Summer	8.358	0.0	45.4	414
960	min	Summer	6.638	0.0	48.0	532
1440	min	Summer	4.791	0.0	51.6	770
2160	min	Summer	3.452	0.0	55.3	1128
2880	min	Summer	2.733	0.0	57.7	1476
4320	min	Summer	1.964	0.0	60.8	2208
5760	min	Summer	1.552	0.0	62.6	2936
7200	min	Summer	1.292	0.0	63.6	3672
		C	1982-20	20 Inno	ovyze	

EAS Transport Planning		Page 2
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-01	Micro
Date 11/03/2022 13:08	Designed by JPS	Desinario
File SY-01.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for PP-01.srcx

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(l/s)	(1/s)	(m³)	
8640	min S	ummer	5.135	0.035	0.0	0.6	0.6	1.8	Flood Risk
10080	min S	ummer	5.133	0.033	0.0	0.5	0.5	1.6	Flood Risk
15	min W	inter	5.203	0.103	0.0	2.7	2.7	14.0	Flood Risk
30	min W	inter	5.224	0.124	0.0	3.9	3.9	18.1	Flood Risk
60	min W	inter	5.236	0.136	0.0	4.5	4.5	20.4	Flood Risk
120	min W	inter	5.238	0.138	0.0	4.5	4.5	20.9	Flood Risk
180	min W	inter	5.233	0.133	0.0	4.3	4.3	20.0	Flood Risk
240	min W	inter	5.227	0.127	0.0	4.1	4.1	18.8	Flood Risk
360	min W	inter	5.216	0.116	0.0	3.5	3.5	16.6	Flood Risk
480	min W	inter	5.208	0.108	0.0	3.0	3.0	14.9	Flood Risk
600	min W	inter	5.199	0.099	0.0	2.6	2.6	13.1	Flood Risk
720	min W	inter	5.189	0.089	0.0	2.5	2.5	11.2	Flood Risk
960	min W	inter	5.177	0.077	0.0	2.2	2.2	8.8	Flood Risk
1440	min W	inter	5.163	0.063	0.0	1.7	1.7	6.0	Flood Risk
2160	min W	inter	5.152	0.052	0.0	1.3	1.3	4.2	Flood Risk
2880	min W	inter	5.148	0.048	0.0	1.0	1.0	3.5	Flood Risk
4320	min W	inter	5.140	0.040	0.0	0.7	0.7	2.4	Flood Risk
5760	min W	inter	5.135	0.035	0.0	0.6	0.6	1.9	Flood Risk
7200	min W	inter	5.132	0.032	0.0	0.5	0.5	1.6	Flood Risk
8640	min W	inter	5.130	0.030	0.0	0.4	0.4	1.3	Flood Risk
10080	min W	inter	5.127	0.027	0.0	0.4	0.4	1.2	Flood Risk

Storm			Rain	Flooded	Discharge	Time-Peak		
1	Even	t	(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)			
8640	min	Summer	1.112	0.0	64.1	4408		
10080	min	Summer	0.980	0.0	64.3	5136		
15	min	Winter	138.874	0.0	15.9	23		
30	min	Winter	90.946	0.0	21.9	34		
60	min	Winter	56.713	0.0	28.1	56		
120	min	Winter	34.162	0.0	34.4	92		
180	min	Winter	25.057	0.0	38.1	128		
240	min	Winter	19.992	0.0	40.7	162		
360	min	Winter	14.500	0.0	44.4	230		
480	min	Winter	11.545	0.0	47.2	300		
600	min	Winter	9.667	0.0	49.5	372		
720	min	Winter	8.358	0.0	51.3	428		
960	min	Winter	6.638	0.0	54.3	550		
1440	min	Winter	4.791	0.0	58.5	788		
2160	min	Winter	3.452	0.0	62.7	1128		
2880	min	Winter	2.733	0.0	65.5	1496		
4320	min	Winter	1.964	0.0	69.2	2208		
5760	min	Winter	1.552	0.0	71.5	2952		
7200	min	Winter	1.292	0.0	73.0	3656		
8640	min	Winter	1.112	0.0	73.9	4360		
10080	min	Winter	0.980	0.0	74.4	5152		
		C	1982-20	20 Inno	vyze			

EAS Transport Planning	Page 3	
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-01	Micro
Date 11/03/2022 13:08	Designed by JPS	Desinargo
File SY-01.casx	Checked by	Diamage
Innovvze	Source Control 2020.1.3	*

Cascade Model Details for PP-01.srcx

Storage is Online Cover Level (m) 5.400

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	10.2
Membrane Percolation (mm/hr)	1000	Length (m)	64.6
Max Percolation (l/s)	183.0	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	5.100	Cap Volume Depth (m)	0.300

Pipe Outflow Control

Diameter (m) 0.100 Entry Loss Coefficient 0.500 Slope (1:X) 300.0 Coefficient of Contraction 0.600 Length (m) 5.000 Upstream Invert Level (m) 5.100 Roughness k (mm) 0.600

EAS Transport Planning		Page 1
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-01	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:10	Designed by JPS	Desinado
File SY-01.casx	Checked by	Drainage
Innovvze	Source Control 2020.1.3	

Cascade Summary of Results for SY-01.srcx

Upstream Outflow To Overflow To Structures

PP-01.srcx (None) (None)

Half Drain Time : 74 minutes.

	Storn Event	n C	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	3.914	0.634	0.0	5.0	5.0	21.7	ОК
30	min S	Summer	4.105	0.825	0.0	5.0	5.0	28.2	ΟK
60	min S	Summer	4.274	0.994	0.0	5.0	5.0	34.0	ΟK
120	min S	Summer	4.363	1.083	0.0	5.0	5.0	37.1	ΟK
180	min S	Summer	4.337	1.057	0.0	5.0	5.0	36.1	ΟK
240	min S	Summer	4.289	1.009	0.0	5.0	5.0	34.5	ΟK
360	min S	Summer	4.183	0.903	0.0	5.0	5.0	30.9	ΟK
480	min S	Summer	4.072	0.792	0.0	5.0	5.0	27.1	ΟK
600	min S	Summer	3.962	0.682	0.0	5.0	5.0	23.3	ΟK
720	min S	Summer	3.880	0.600	0.0	5.0	5.0	20.5	ОК
960	min S	Summer	3.724	0.444	0.0	5.0	5.0	15.2	ΟK
1440	min S	Summer	3.513	0.233	0.0	5.0	5.0	8.0	ΟK
2160	min S	Summer	3.446	0.166	0.0	4.2	4.2	5.7	ΟK
2880	min S	Summer	3.417	0.137	0.0	3.4	3.4	4.7	ΟK
4320	min S	Summer	3.380	0.100	0.0	2.5	2.5	3.4	ОК
5760	min S	Summer	3.360	0.080	0.0	2.0	2.0	2.7	ОК
7200	min S	Summer	3.347	0.067	0.0	1.7	1.7	2.3	ΟK

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.874	0.0	38.8	24
30	min	Summer	90.946	0.0	51.9	39
60	min	Summer	56.713	0.0	65.5	68
120	min	Summer	34.162	0.0	79.5	122
180	min	Summer	25.057	0.0	87.8	160
240	min	Summer	19.992	0.0	93.5	190
360	min	Summer	14.500	0.0	101.9	252
480	min	Summer	11.545	0.0	108.2	316
600	min	Summer	9.667	0.0	113.3	378
720	min	Summer	8.358	0.0	117.5	444
960	min	Summer	6.638	0.0	124.4	562
1440	min	Summer	4.791	0.0	134.4	772
2160	min	Summer	3.452	0.0	144.7	1112
2880	min	Summer	2.733	0.0	152.1	1476
4320	min	Summer	1.964	0.0	162.6	2208
5760	min	Summer	1.552	0.0	169.8	2936
7200	min	Summer	1.292	0.0	175.2	3672
		C	1982-20	20 Innc	ovyze	

EAS Transport Planning		Page 2
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-01	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:10	Designed by JPS	Desinado
File SY-01.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

(Cascade Summa	ry of Result	s for SY	-01.src	x	
Storm	Max Max	Max	Max	Max	Max	Status
Event	Level Deptl	h Infiltration	Control S	Outflow	Volume	
	(m) (m)	(1/s)	(1/s)	(1/s)	(m³)	
ecto min cum	man 2 228 0 059	2 0 0	1 /	1 /	2 0	O V
10090 min Sum	m_{0} 2 2 2 1 0 0 5		1.4	1 2	2.0	OK
10080 min Sum	mer 3.331 0.03.		1.3	1.3	24 7	OK
15 MIN NIM	ter 4.002 0.72	2 0.0	5.0	5.0	24.7	OK
30 min Win	ter 4.232 0.95	2 0.0	5.0	5.0	32.6	OK
60 min Win	ter 4.439 1.15	9 0.0	5.0	5.0	39.6	ОК
120 min Win	ter 4.570 1.290	0.0	5.0	5.0	44.1	ОК
180 min Win	ter 4.554 1.27	4 0.0	5.0	5.0	43.6	ΟK
240 min Win	ter 4.475 1.19	5 0.0	5.0	5.0	40.9	ΟK
360 min Win	ter 4.311 1.03	1 0.0	5.0	5.0	35.3	ΟK
480 min Win	ter 4.131 0.85	1 0.0	5.0	5.0	29.1	ΟK
600 min Win	ter 3.968 0.688	в 0.0	5.0	5.0	23.5	ΟK
720 min Win	ter 3.835 0.55	5 0.0	5.0	5.0	19.0	ΟK
960 min Win	ter 3.594 0.314	4 0.0	5.0	5.0	10.7	ΟK
1440 min Win	ter 3.453 0.173	3 0.0	4.3	4.3	5.9	ОК
2160 min Win	ter 3.409 0.12	9 0.0	3.2	3.2	4.4	ОК
2880 min Win	ter 3.383 0.103	3 0.0	2.6	2.6	3.5	ОК
4320 min Win	ter 3.354 0.074	4 0.0	1.8	1.8	2.5	ОК
5760 min Win	ter 3.338 0.058	3 0.0	1.5	1.5	2.0	ОК
7200 min Win	ter 3.328 0.048	в 0.0	1.2	1.2	1.7	ОК
8640 min Win	ter 3.322 0.042	2 0.0	1.0	1.0	1.4	ОК
10080 min Win	ter 3.317 0.03'	7 0.0	0.9	0.9	1.2	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
8640	min	Summer	1.112	0.0	179.5	4400
10080	min	Summer	0.980	0.0	182.8	5104
15	min	Winter	138.874	0.0	43.9	25
30	min	Winter	90.946	0.0	58.5	39
60	min	Winter	56.713	0.0	73.8	68
120	min	Winter	34.162	0.0	89.5	124
180	min	Winter	25.057	0.0	98.7	176
240	min	Winter	19.992	0.0	105.2	208
360	min	Winter	14.500	0.0	114.6	274
480	min	Winter	11.545	0.0	121.7	340
600	min	Winter	9.667	0.0	127.4	410
720	min	Winter	8.358	0.0	132.2	470
960	min	Winter	6.638	0.0	139.9	572
1440	min	Winter	4.791	0.0	151.2	758
2160	min	Winter	3.452	0.0	162.9	1124
2880	min	Winter	2.733	0.0	171.3	1480
4320	min	Winter	1.964	0.0	183.3	2208
5760	min	Winter	1.552	0.0	191.7	2944
7200	min	Winter	1.292	0.0	198.0	3680
8640	min	Winter	1.112	0.0	203.0	4392
10080	min	Winter	0.980	0.0	207.1	5032
		C	1982-20	20 Inno	vvze	

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-01	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:10	Designed by JPS	Dcainago
File SY-01.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	·

Cascade Model Details for SY-01.srcx

Storage is Online Cover Level (m) 5.400

Cellular Storage Structure

Invert Level (m) 3.280 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	36.0	0.0	1.321	0.0	0.0
1.320	36.0	0.0			

Pump Outflow Control

Invert Level (m) 3.280

Depth (m)	Flow (l/s)	Depth (m)	Flow $(1/s)$	Depth (m)	Flow $(1/s)$	Depth (m)	Flow (l/s)
0.200	5.0000	1.800	5.0000	3.400	5.0000	5.000	5.0000
0.400	5.0000	2.000	5.0000	3.600	5.0000	5.200	5.0000
0.600	5.0000	2.200	5.0000	3.800	5.0000	5.400	5.0000
0.800	5.0000	2.400	5.0000	4.000	5.0000	5.600	5.0000
1.000	5.0000	2.600	5.0000	4.200	5.0000	5.800	5.0000
1.200	5.0000	2.800	5.0000	4.400	5.0000	6.000	5.0000
1.400	5.0000	3.000	5.0000	4.600	5.0000		
1.600	5.0000	3.200	5.0000	4.800	5.0000		

EAS Transport Plannin	Page 1						
Unit 23, The Maltings							
Stanstead Abbotts							
Hertfordshire, SG12	SHG	lin1	1in100vr+40%CC				Micro
Date 11/03/2022 13.12	MILLO						
	Drainage						
File SI-02.SrCx		Chec	скеа ру	1 0 0 0			<u> </u>
Innovyze		Sour	ce Cont	trol 202	0.1.3		
Summary of	of Results	for 10)0 year	Return	Period	(+40%))
	Half I	Drain Ti	.me : 30	minutes.			
Storm	Max Max	M	ax	Max	Max	Max	Status
Event	Level Depth	Infilt	ration (Control S	Outflow	Volume	
	(m) (m)	(1	/s)	(1/s)	(1/s)	(m³)	
15 min Summer	2.679 0.799	9	0.0	5.0	5.0	11.6	O K
30 min Summer	2.852 0.972	2	0.0	5.0	5.0	14.1	O K
120 min Summer	2.8/2 0.992	2	0.0	5.0	5.0	12 6	OK
120 min Summer	2.749 0.865	2	0.0	5.0	5.0	10 5	OK
180 min Summer	2.601 0.721	-	0.0	5.0	5.0	10.5	OK
240 min Summer	2.460 0.580)	0.0	5.0	5.0	0.4 E 2	O K
360 min Summer	2.242 0.362	<u></u>	0.0	5.0	5.0	5.3	OK
480 min Summer	2.113 0.233	5	0.0	5.0	5.0	3.4	OK
600 min Summer	2.06/ 0.18		0.0	4./	4./	2.7	OK
720 min Summer	2.044 0.164		0.0	4.1	4.1	2.4	0 K
960 min Summer	2.013 0.133	3	0.0	3.3	3.3	1.9	ΟK
1440 min Summer	1.978 0.098	}	0.0	2.4	2.4	1.4	O K
2160 min Summer	1.951 0.071		0.0	1.8	1.8	1.0	O K
2880 min Summer	1.936 0.056	0	0.0	1.4	1.4	0.8	O K
4320 min Summer	1.921 0.041	-	0.0	1.0	1.0	0.6	O K
5760 min Summer	1.912 0.032	2	0.0	0.8	0.8	0.5	O K
7200 min Summer	1.907 0.027	1	0.0	0.7	0.7	0.4	O K
8640 min Summer	1.903 0.023	3	0.0	0.6	0.6	0.3	O K
10080 min Summer	1.900 0.020)	0.0	0.5	0.5	0.3	O K
15 min Winter	2.800 0.920)	0.0	5.0	5.0	13.4	O K
						_	
	Storm	Rain	Flooded	Discharge	e Time-P	eak	
	Event	(mm/hr)	Volume	Volume	(mins	5)	
			(m³)	(m³)			
15	min Summer	138.874	0.0	16.4	4	21	
30	min Summer	90.946	0.0	21.	5	32	
60	min Summer	56.713	0.0	26.1	8	50	
120	min Summer	34.162	0.0	32.2	3	82	
180	min Summer	25.057	0.0	35	5	116	
240	min Summer	19.992	0.0	37.1	8	146	
360	min Summer	14 500	0 0	41	1	204	
480	min Summer	11.545	0.0	43	6	258	
600	min Summer	9.667	0.0	45	- 7	314	
720	min Summer	8.358	0.0	47	4	374	
960	min Summer	6.638	0.0	50 1	- 2	494	
1//0	min Summer	4 791	0.0	54	- 3	736	
2160	min Summer	3 452	0.0	52 .	- 7 1	100	
2100	min Summer	2.432	0.0	50. 62 I	, ⊥ ງ 1	468	
12000	min Summor	1 061	0.0	66 0	ο I ρ ο	204	
4520	min Summor	1 550	0.0	70	ン Z 1 つ	207 920	
3760	min Summer	1 202	0.0	70.4	⊥ ∠ ς ∩	520 616	
0640	min Summor	1 110	0.0	75.7	د د ۸ 7	368	
10000	min Summer	1 0 0 0 0 0	0.0	, J. 77	, 4 g 1	976	
10080	min Winton	130 07/	0.0	18	- 4 4	22	
1 1 1		1.)().()/4				6 . C .	

©1982-2020 Innovyze

EAS Transport Planning	Page 2			
Unit 23, The Maltings				
Stanstead Abbotts	SY-02			
Hertfordshire, SG12 8HG	lin100yr+4	Micro		
Date 11/03/2022 13:13	Designed b	v JPS		
File SY-02.srcx	Checked by	<u> </u>		urainage
	Source Con	trol 2020	1 3	
	bource com	2020	• 1 • 5	
Summary of Results f	or 100 year	Return P	eriod (+40%)	
	01 100 7041	10004111 1	01100 (1100)	-
Storm Max Max	Max	Max	Max Max	Status
Event Level Depth	Infiltration (Control S C	Outflow Volume	
(m) (m)	(1/s)	(l/s) ((1/s) (m³)	
30 min Winter 3,005 1,125	0.0	5.0	5.0 16.4	ОК
60 min Winter 3.022 1.142	0.0	5.0	5.0 16.6	O K
120 min Winter 2.825 0.945	0.0	5.0	5.0 13.7	O K
180 min Winter 2.589 0.709	0.0	5.0	5.0 10.3	ОК
240 min Winter 2.376 0.496	0.0	5.0	5.0 7.2	O K
360 min Winter 2.099 0.219	0.0	5.0	5.0 3.2	O K
480 min Winter 2.048 0.168	0.0	4.2	4.2 2.4	ОК
600 min Winter 2.022 0.142	0.0	3.5	3.5 2.1	O K
/20 min Winter 2.003 0.123	0.0	3.1	3.1 1.8	OK
960 min Winter 1.978 0.098	0.0	2.5	2.5 1.4 1.9 1.0	OK
2160 min Winter 1 931 0 051	0.0	1 3	1.3 0.7	O K
2880 min Winter 1.921 0.041	0.0	1.0	1.0 0.6	0 K
4320 min Winter 1.909 0.029	0.0	0.7	0.7 0.4	O K
5760 min Winter 1.903 0.023	0.0	0.6	0.6 0.3	O K
7200 min Winter 1.899 0.019	0.0	0.5	0.5 0.3	O K
8640 min Winter 1.897 0.017	0.0	0.4	0.4 0.2	O K
10080 min Winter 1.895 0.015	0.0	0.4	0.4 0.2	O K
Storm 1	Dain Elandad	Diasharaa	Time_Deak	
Storm I	m/hr) Volumo	Volumo	(ming)	
Evenc (n	(m ³)	(m ³)	(millis)	
	()	()		
30 min Winter 9	0.946 0.0	24.1	33	
60 min Winter 5	6.713 0.0	30.0	54	
120 min Winter 3	34.162 0.0	36.2	90	
180 min Winter 2		39.8	122	
240 min Winter 1 360 min Winter 1	4 500 0.0	42.3	200	
480 min Winter 1	1.545 0.0	40.U 12 9	200	
600 min Winter	9.667 0.0	51.1	314	
720 min Winter	8.358 0.0	53.1	374	
960 min Winter	6.638 0.0	56.2	494	
1440 min Winter	4.791 0.0	60.8	734	
2160 min Winter	3.452 0.0	65.8	1104	
2880 min Winter	2.733 0.0	69.4	1440	
4320 min Winter	1.964 0.0	74.8	2160	
5/60 min Winter	1.552 0.0	78.8	2864	
/200 min Winter	1.112 0.0	82.1	3648	
10080 min Winter	0.980 0.0	04.8 87 1	4044 5110	
10000 mill willer	0.00	07.1	J 1 1 Z	

©1982-2020 Innovyze

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-02	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:13	Designed by JPS	Desinario
File SY-02.srcx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 4.000

Cellular Storage Structure

Invert Level (m) 1.880 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	15.3	0.0	1.321	0.0	0.0
1.320	15.3	0.0			

Pump Outflow Control

Invert Level (m) 1.880

Depth (m)	Flow (l/s)						
0.200	5.0000	0.600	5.0000	1.000	5.0000	1.400	5.0000
0.400	5.0000		5.0000	1.200	5.0000	6.000	5.0000

EAS Transport Planning	a					Page 1
Unit 23, The Maltings		Anglia S	Square			
Stanstead Abbotts		SY-03	-			
Hertfordshire SC12 81	ЧС	1 i n 1 0 0 v	~+102CC			
nercioidsnire, 5912 0	119	TTHIOO Y				MICrO
Date 11/03/2022 13:14		Designed	a by JP:	0		Drainage
File SY-03.srcx		Checked	by			brainage
Innovyze		Source (Control	2020.1.3		
Summary of	f Results f	or 100 y	ear Ret	urn Period	d (+40%))
	Half Dr	ain Time :	49 minut	ces.		
Storm	Max Max	Max	Max	Max	Max	Status
Event	Level Depth :	Infiltrati	on Contro	Σ Outflow	w Volume	
	(m) (m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Summer	4.165 0.885	0	.0 19.	.0 19.0	0 67.2	ΟK
30 min Summer	4.356 1.076	0	.0 20.	6 20.	6 81.8	O K
60 min Summer	4.401 1.121	0	.0 21.	.0 21.	85.2	ОК
120 min Summer	4.324 1.044	0	.0 20.	.3 20.3	3 79.4	O K
180 min Summer	4.225 0.945	0	.0 19.	.5 19.	5 71.8	O K
240 min Summer	4.123 0.843	0	.0 18.	.6 18.	664.1	O K
360 min Summer	3.937 0.657	0	.0 18.	.3 18.3	3 49.9	O K
480 min Summer	3.770 0.490	0	.0 18.	.3 18.	3 37.3	0 K
600 min Summer	3.598 0.318	0	.0 18.	.3 18.3	3 24.2	O K
720 min Summer	3.441 0.161	0	.0 18.	.3 18.3	3 12.3	OK
960 min Summer	3.342 0.062	0	.0 17	1 1/•. 2 12	1 4.7	0 K
1440 min Summer	3.283 0.003	0	.0 13.	. 3 I.3	5 U.Z	OK
2880 min Summer	3.280 0.000	0	.0 9.	6 7	5 0.0	OK
4320 min Summer	3.280 0.000	0	.0 5.	5 5	5 0.0	0 K
5760 min Summer	3.280 0.000	0	.0 4.	3 4.	3 0.0	0 K
7200 min Summer	3.280 0.000	0	.0 3.	.6 3.	6 0.0	ΟK
8640 min Summer	3.280 0.000	0	.0 3.	1 3.1	1 0.0	O K
10080 min Summer	3.280 0.000	0	.0 2.	.7 2.	7 0.0	O K
15 min Winter	4.292 1.012	0	.0 20.	1 20.1	1 76.9	O K
S	torm 1	Rain Floo	ded Disc	harge Time-	Peak	
E	vent (m	m/hr) Vol	ume Vol	Lume (mi	ns)	
		(m	3) (I	n³)		
15 n	nin Summer 13	8.874	0.0	88.7	22	
30 n	nin Summer 9	0.946	0.0	116.2	33	
60 m	nin Summer 5	6.713	0.0	144.9	52	
120 r	nin Summer 3	4.162	0.0	175.0	86	
180 n	nin Summer 2	5.057	0.0	192.8	120	
240 m	nin Summer 1	9.992	0.0	205.4	154	
360 r	nin Summer 1	4.500	0.0	223.0	222	
480 r	nın Summer 1	1.545	0.0	236.9	286	
600 m	nin Summer	9.66/ 9.350	0.0	241.9	346 300	
/20 m	nin Summor	0.330	0.0	237.U 272 A	ンサム 500	
1440 m	nin Summer	4.791	0.0	294.9	736	
2160 m	nin Summer	3.452	0.0	318.8	0	
2880 n	nin Summer	2.733	0.0	336.5	0	
4320 m	nin Summer	1.964	0.0	362.7	0	
5760 r	nin Summer	1.552	0.0	382.2	0	
7200 r	nin Summer	1.292	0.0	397.8	0	
8640 n	nin Summer	1.112	0.0	410.9	0	
10080 r	nin Summer	0.980	0.0	422.2	0	
15 r	nın Winter 13	8.874	0.0	99.8	22	

©1982-2020 Innovyze

EAS Transport Planning	Page 2			
Unit 23, The Maltings	Anglia Sc	luare		
Stanstead Abbotts	SY-03			
Hertfordshire, SG12 8HG	lin100vr+	40%CC		Micro
Date 11/03/2022 13:14	Designed	by JPS		
File $SY=03$ srev	Checked h	<i>NY</i>		Urainage
	Source Co	$\frac{y}{2}$	1 2	
111100920	Source co	JICTOT 2020	•1•3	
Summary of Results f	or 100 ve	ar Return F	Period (+40%))
	<u> </u>		CIICA (1100)	<u></u>
Storm Max Max	Max	Max	Max Max	Status
Event Level Depth	Infiltratior	Control E	Outflow Volume	
(m) (m)	(1/s)	(1/s)	(1/s) (m³)	
30 min Winter 4 521 1 241	0 (21.9	21 9 94 3	ОК
60 min Winter 4.591 1.311	0.0	22.4	22.4 99.6	O K
120 min Winter 4.476 1.196	0.0	21.6	21.6 90.9	O K
180 min Winter 4.326 1.046	0.0	20.4	20.4 79.5	O K
240 min Winter 4.174 0.894	0.0	19.1	19.1 68.0	O K
360 min Winter 3.899 0.619	0.0	18.3	18.3 47.1	O K
480 min Winter 3.610 0.330	0.0	18.3	18.3 25.0	O K
600 min Winter 3.379 0.099	0.0	18.1	18.1 7.5	O K
720 min Winter 3.327 0.047	0.0	16.4	16.4 3.6	O K
960 min Winter 3.283 0.003	0.0	13.3	13.3 0.2	OK
1440 min Winter 3.280 0.000	0.0	9.7	9.7 0.0	OK
2160 min Winter 3.280 0.000	0.0	7.0	7.0 0.0	OK
2880 min Winter 3.280 0.000	0.0	5.5	5.5 0.0	OK
4320 min Winter 3.280 0.000	0.0	4.0	4.0 0.0	OK
7200 min Winter 3 280 0 000	0.0	2.6	2.6 0.0	OK
8640 min Winter 3 280 0 000	0.0	2.0	2.0 0.0	0 K
10080 min Winter 3.280 0.000	0.0	2.0	2.0 0.0	O K
Storm	Rain Flood	ed Discharge	Time-Peak	
Event (n	mm/hr) Volum	ne Volume	(mins)	
	(m³)	(m³)		
30 min Winter	90.946 0	.0 130.3	34	
60 min Winter 5	56.713 0	.0 162.8	56	
120 min Winter 3	34.162 0	.0 196.2	92	
180 min Winter 2	25.057 0	.0 216.3	130	
240 min Winter 1	19.992 0	.0 229.9	166	
360 min Winter 1	L4.500 0	.0 250.0	236	
480 min Winter 1	L1.545 0	.0 264.9	302	
600 min Winter	9.667 0	.0 277.8	330	
720 min Winter	8.358 0	.0 288.0	382	
960 min Winter	0.038 0	.0 305.1	496	
1440 min Winter 2160 min Winter	4./91 U	.0 330.3	U	
2100 MIIN WINTER 2880 min Winter	2 733 O	.0 357.0	0	
4320 min Winter	1.964 0	.0 2063	0	
5760 min Winter	1.552 0	.0 428.1	0	
7200 min Winter	1.292 0	.0 445.6	0	
8640 min Winter	1.112 0	.0 460.2	Ũ Û	
10080 min Winter	0.980 0	.0 472.9	0	

©1982-2020 Innovyze

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-03	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:14	Designed by JPS	Desinarro
File SY-03.srcx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 5.200

Cellular Storage Structure

Invert Level (m) 3.280 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	80.0	0.0	1.321	0.0	0.0
1.320	80.0	0.0			

Hydro-Brake® Outflow Control

Design Head (m) 1.320 Hydro-Brake® Type Md4 Invert Level (m) 3.080 Design Flow (l/s) 21.0 Diameter (mm) 153

Depth (m) Flow (1/s)	Depth (m) Flow	(1/s) Depth (m) H	Flow (l/s)	Depth (m) Flo	w (l/s)
0.100 3.9	1.200	20.0 3.000	31.6	7.000	48.3
0.200 13.0	1.400	21.6 3.500	34.1	7.500	50.0
0.300 18.1	1.600	23.1 4.000	36.5	8.000	51.6
0.400 17.1	1.800	24.5 4.500	38.7	8.500	53.2
0.500 15.4	2.000	25.8 5.000	40.8	9.000	54.7
0.600 15.1	2.200	27.1 5.500	42.8	9.500	56.2
0.800 16.4	2.400	28.3 6.000	44.7		
1.000 18.3	2.600	29.4 6.500	46.5		

EAS Transport Planning							Page 1
Unit 23, The Maltings		Anglia :	Square	è			
Stanstead Abbotts		SY-04	-				
Hortfordshire SC12 84	C	1 i n 1 0 0 v	r=1020	rc			
Deter 11 (02 (2002 12 15	G	TINIOOY.					MICrO
Date 11/03/2022 13:15		Designed	а ру Ј	IPS			Drainage
File SY-04.srcx		Checked	by				brainage
Innovyze		Source (Contro	01 2020	.1.3		
Summary of	Results f	or 100 y	ear Re	eturn E	Period	(+40%)	
							_
	Half Dra	ain Time :	52 min	nutes.			
Storm	Max Max	Max	Ma	ax	Max	Max	Status
Event L	evel Depth 1	Infiltrati	on Cont	trol Σ (Dutflow	Volume	
	(m) (m)	(1/s)	(1,	/s)	(1/s)	(m³)	
15 min Summer 3	.115 0.835	0	.0	35.7	35.7	127.8	ОК
30 min Summer 3	.324 1.044	0	.0	35.7	35.7	159.9	ОК
60 min Summer 3	.421 1.141	0	.0	35.7	35.7	174.8	ΟK
120 min Summer 3	.395 1.115	0	.0	35.7	35.7	170.8	ΟK
180 min Summer 3	.311 1.031	0	.0	35.7	35.7	158.0	ОК
240 min Summer 3	.216 0.936	0	.0	35.7	35.7	143.3	O K
360 min Summer 3	022 0 742	0	0	35 7	35 7	113 7	0 K
480 min Summer 2	829 0 549	0	0	35.7	35.7	84 0	0 K
600 min Summer 2	704 0 424	0	0	35.7	35.7	65 0	0 K
720 min Summer 2	6/2 0 362	0	.0 .	31 5	31 5	55 /	0 K
960 min Summer 2	579 0 299	0	.0 .	29.8	29.8	15 7	O K
1440 min Summer 2	520 0 240	0	.0 .	29.0 22 6	29.0	4J.1 26 7	0 K
2160 min Summer 2	.520 0.240	0	.0	1 C 7	10 7	20.7	0 K
2160 min Summer 2	.478 0.198	0	.0	10./	12.2	30.3	0 K
2880 min Summer 2	.454 0.174	0	.0 .	13.3	13.3	26.7	OK
4320 min Summer 2	.42/ 0.14/	0	.0	9.6	9.6	22.5	OK
5760 min Summer 2	.411 0.131	0	.0	1.6	1.6	20.0	OK
7200 min Summer 2	.400 0.120	0	.0	6.4	6.4	18.3	OK
8640 min Summer 2	.391 0.111	0	.0	5.5	5.5	1/.0	OK
10080 min Summer 2	.385 0.105	0	.0	4.8	4.8	16.0	OK
15 min Winter 3	.230 0.950	0	• 0	35./	35.7	145.5	ΟK
st	orm F	Rain Floo	oded Di	scharge	Time-Pe	eak	
Ev	ent (m	m/hr) Vol	ume	Volume	(mins	:)	
		,, (m	3)	(m ³)	(,	
			-				
15 m:	in Summer 13	8.874	0.0	155.1		22	
30 m:	in Summer 9	0.946	0.0	203.4		34	
60 m:	in Summer 5	6.713	0.0	254.5		54	
120 m:	in Summer 3	4.162	0.0	306.7		88	
180 m:	in Summer 2	5.057	0.0	337.5	-	122	
240 m:	in Summer 1	9.992	0.0	359.1	-	156	
360 m:	in Summer 1	4.500	0.0	390.7	2	222	
480 m:	in Summer 1	1.545	0.0	414.8	4	278	
600 m:	in Summer	9.667	0.0	434.2		328	
720 m:	in Summer	8.358	0.0	450.5		384	
960 m:	in Summer	6.638	0.0	477.1	1	500	
1440 m:	in Summer	4.791	0.0	516.3		740	
2160 m:	in Summer	3.452	0.0	558.7	11	104	
2880 m:	in Summer	2.733	0.0	589.7	14	468	
4320 m:	in Summer	1.964	0.0	635.3	22	204	
5760 m:	in Summer	1.552	0.0	670.1	29	928	
7200 m:	in Summer	1.292	0.0	697.4	30	664	
8640 m:	in Summer	1.112	0.0	720.2	40	368	
10080 m:	in Summer	0.980	0.0	739.6	51	120	
15 m:	in Winter 13	8.874	0.0	173.8		23	

©1982-2020 Innovyze

EAS Transport Planning							
Unit 23, The Maltings	Unit 23, The Maltings Anglia Square						
Stanstead Abbotts SY-04							
Hertfordshire, SG12 8	HG	lin1	00vr+4()%CC			Micco
Date 11/03/2022 13:15		Desi	aned hy	7 JPS			MILLO
		Chag	lead by	V OI D			Drainage
File Si-04.SrCx		Cnec	кеа ру	1 0 0 0			
Innovyze		Sour	ce Cont	crol 2020).1.3		
Summary o	f Results f	For 10	10 vear	Return	Period	(+40%)	
	1 1(050105 1	101 10	o year	itecurii .	CIICU	(+100)	-
Storm	Max Max	Ма	ax	Max	Max	Max	Status
Event	Level Depth	Infilt	ration C	Control S	Outflow	Volume	
	(m) (m)	(1)	s)	(1/s)	(1/s)	(m³)	
30 min Winter	3.466 1.186		0.0	35.7	35.7	181.7	ОК
60 min Winter	3.579 1.299		0.0	35.7	35.7	198.9	ОК
120 min Winter	3.525 1.245		0.0	35.7	35.7	190.6	O K
180 min Winter	3.398 1.118		0.0	35.7	35.7	171.2	O K
240 min Winter	3.253 0.973		0.0	35.7	35.7	149.0	O K
360 min Winter	2.934 0.654		0.0	35.7	35.7	100.1	O K
480 min Winter	2.684 0.404		0.0	35.6	35.6	61.9	O K
600 min Winter	2.607 0.327		0.0	32.4	32.4	50.0	O K
720 min Winter	2.568 0.288		0.0	28.6	28.6	44.1	O K
960 min Winter	2.524 0.244		0.0	23.1	23.1	37.3	O K
1440 min Winter	2.479 0.199		0.0	16.8	16.8	30.5	0 K
2160 min Winter	2.446 0.166		0.0	12.2	12.2	25.5	ОК
2880 min Winter	2.427 0.147		0.0	9.7	9.7	22.5	ОК
4320 min Winter	2.405 0.125		0.0	7.0	7.0	19.1	ОК
5760 min Winter	2.392 0.112		0.0	5.5	5.5	17.1	ОК
7200 min Winter	2.382 0.102		0.0	4.6	4.6	15.7	OK
8640 min Winter	2.3/6 0.096		0.0	4.0	4.0	14.6	ОК
	2.370 0.090		0.0	5.5	5.5	10.0	0 R
1	storm	Rain	FTooded	Discharge	e Time-P	eak	
	Event (r	nm/hr)	(m ³)	Volume (m³)	(mins	3)	
20	min Winter (90 916		228 ()	34	
50	min Winter !	56 713	0.0	220.U 285 1		58	
120	min Winter (34.162	0.0	200.1	-	94	
180	min Winter	25.057	0.0	378 1	•	132	
2.40	min Winter	19.992	0.0	402.3	-	168	
360	min Winter	14.500	0.0	437.7	7	234	
480	min Winter	11.545	0.0	464.	7	274	
600	min Winter	9.667	0.0	486.4	ł	326	
720	min Winter	8.358	0.0	504.6	ō	384	
960	min Winter	6.638	0.0	534.4	Į	502	
1440	min Winter	4.791	0.0	578.5	5	742	
2160	min Winter	3.452	0.0	625.8	3 1	104	
2880	min Winter	2.733	0.0	660.6	5 1	472	
4320	min Winter	1.964	0.0	711.7	2	208	
5760	min Winter	1.552	0.0	750.6	5 2	936	
7200	min Winter	1.292	0.0	781.2	2 3	672	
8640	min Winter	1.112	0.0	806.7	4 -	392	
10080	mın Wınter	0.980	0.0	828.6	» 5	072	

©1982-2020 Innovyze

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-04	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:15	Designed by JPS	Desinario
File SY-04.srcx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 4.400

Cellular Storage Structure

Invert Level (m) 2.280 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	161.2	0.0	1.321	0.0	0.0
1.320	161.2	0.0			

Hydro-Brake® Outflow Control

Design Head (m) 1.320 Hydro-Brake® Type Md4 Invert Level (m) 2.280 Design Flow (l/s) 36.0 Diameter (mm) 200

Depth (m) H	[low (l/s)	Depth (m)	Flow $(1/s)$	Depth (m) Fl	.ow (1/s)	Depth (m)	Flow (l/s)
0.100	4.4	1.200	34.2	3.000	54.0	7.000	82.5
0.200	16.9	1.400	36.9	3.500	58.3	7.500	85.4
0.300	30.0	1.600	39.4	4.000	62.3	8.000	88.2
0.400	35.6	1.800	41.8	4.500	66.1	8.500	90.9
0.500	34.2	2.000	44.1	5.000	69.7	9.000	93.5
0.600	31.2	2.200	46.2	5.500	73.1	9.500	96.1
0.800	29.5	2.400	48.3	6.000	76.4		
1.000	31.5	2.600	50.3	6.500	79.5		

EAS Transport Planning		Page 1
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-01	Micro
Date 11/03/2022 13:16	Designed by JPS	Dcainago
File SY-05 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for PP-02.srcx

Upstream Outflow To Overflow To Structures

(None) SY-05.srcx SY-05.srcx

Half Drain Time : 52 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Stat	us
15	min	Summer	4.281	0.081	0.0	2.6	2.6	12.9	Flood	Risk
30	min	Summer	4.299	0.099	0.0	3.7	3.7	16.6	Flood	Risk
60	min	Summer	4.310	0.110	0.0	4.3	4.3	18.9	Flood	Risk
120	min	Summer	4.315	0.115	0.0	4.6	4.6	19.9	Flood	Risk
180	min	Summer	4.314	0.114	0.0	4.6	4.6	19.7	Flood	Risk
240	min	Summer	4.311	0.111	0.0	4.4	4.4	19.1	Flood	Risk
360	min	Summer	4.304	0.104	0.0	4.0	4.0	17.7	Flood	Risk
480	min	Summer	4.298	0.098	0.0	3.6	3.6	16.4	Flood	Risk
600	min	Summer	4.293	0.093	0.0	3.3	3.3	15.3	Flood	Risk
720	min	Summer	4.288	0.088	0.0	3.1	3.1	14.4	Flood	Risk
960	min	Summer	4.281	0.081	0.0	2.6	2.6	12.8	Flood	Risk
1440	min	Summer	4.269	0.069	0.0	2.1	2.1	10.4	Flood	Risk
2160	min	Summer	4.259	0.059	0.0	1.7	1.7	8.3	Flood	Risk
2880	min	Summer	4.254	0.054	0.0	1.4	1.4	7.2	Flood	Risk
4320	min	Summer	4.247	0.047	0.0	1.0	1.0	5.8	Flood	Risk
5760	min	Summer	4.242	0.042	0.0	0.8	0.8	4.6	Flood	Risk
7200	min	Summer	4.238	0.038	0.0	0.7	0.7	3.9	Flood	Risk

	Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Time-Peak (mins)	
15	min	Summer	138.874	0.0	14.5	23	
30	min	Summer	90.946	0.0	20.0	34	
60	min	Summer	56.713	0.0	25.8	52	
120	min	Summer	34.162	0.0	31.7	84	
180	min	Summer	25.057	0.0	35.2	118	
240	min	Summer	19.992	0.0	37.5	152	
360	min	Summer	14.500	0.0	41.0	216	
480	min	Summer	11.545	0.0	43.6	280	
600	min	Summer	9.667	0.0	45.7	342	
720	min	Summer	8.358	0.0	47.4	404	
960	min	Summer	6.638	0.0	50.1	528	
1440	min	Summer	4.791	0.0	53.9	772	
2160	min	Summer	3.452	0.0	57.7	1128	
2880	min	Summer	2.733	0.0	60.2	1496	
4320	min	Summer	1.964	0.0	63.5	2224	
5760	min	Summer	1.552	0.0	65.3	2944	
7200	min	Summer	1.292	0.0	66.4	3680	
		C	1982-20	20 Inno	ovyze		
EAS Transport Planning		Page 2					
-------------------------	-------------------------	-----------					
Unit 23, The Maltings	Anglia Square						
Stanstead Abbotts	lin100yr+40%CC						
Hertfordshire, SG12 8HG	SY-01	Micro					
Date 11/03/2022 13:16	Designed by JPS	Desinario					
File SY-05 Cascade.casx	Checked by	Drainage					
Innovyze	Source Control 2020.1.3						

Cascade Summary of Results for PP-02.srcx

Storm			Max	Max	Max	Max		Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(l/s)		(1/s)	(m³)	
8640	min Su	ummer	4.235	0.035	0.0	0.6		0.6	3.3	Flood Risk
10080	min Su	ummer	4.233	0.033	0.0	0.5		0.5	3.0	Flood Risk
15	min Wi	nter	4.290	0.090	0.0	3.2		3.2	14.7	Flood Risk
30	min Wi	nter	4.310	0.110	0.0	4.3		4.3	18.9	Flood Risk
60	min Wi	nter	4.321	0.121	0.0	5.0		5.0	21.3	Flood Risk
120	min Wi	nter	4.324	0.124	0.0	5.2		5.2	21.8	Flood Risk
180	min Wi	nter	4.320	0.120	0.0	4.9		4.9	20.9	Flood Risk
240	min Wi	nter	4.314	0.114	0.0	4.6		4.6	19.7	Flood Risk
360	min Wi	nter	4.304	0.104	0.0	4.0		4.0	17.6	Flood Risk
480	min Wi	nter	4.296	0.096	0.0	3.5		3.5	15.9	Flood Risk
600	min Wi	nter	4.289	0.089	0.0	3.1		3.1	14.5	Flood Risk
720	min Wi	nter	4.284	0.084	0.0	2.8		2.8	13.4	Flood Risk
960	min Wi	nter	4.274	0.074	0.0	2.3		2.3	11.4	Flood Risk
1440	min Wi	nter	4.262	0.062	0.0	1.8		1.8	8.9	Flood Risk
2160	min Wi	nter	4.253	0.053	0.0	1.3		1.3	7.0	Flood Risk
2880	min Wi	nter	4.248	0.048	0.0	1.1		1.1	6.0	Flood Risk
4320	min Wi	nter	4.240	0.040	0.0	0.8		0.8	4.4	Flood Risk
5760	min Wi	nter	4.236	0.036	0.0	0.6		0.6	3.4	Flood Risk
7200	min Wi	nter	4.233	0.033	0.0	0.5		0.5	2.9	Flood Risk
8640	min Wi	nter	4.230	0.030	0.0	0.4		0.4	2.4	Flood Risk
10080	min Wi	nter	4.228	0.028	0.0	0.4		0.4	2.1	Flood Risk

Storm			Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	1.112	0.0	66.9	4408	
10080	min	Summer	0.980	0.0	67.1	5136	
15	min	Winter	138.874	0.0	16.6	23	
30	min	Winter	90.946	0.0	22.8	34	
60	min	Winter	56.713	0.0	29.3	54	
120	min	Winter	34.162	0.0	35.9	90	
180	min	Winter	25.057	0.0	39.8	126	
240	min	Winter	19.992	0.0	42.5	160	
360	min	Winter	14.500	0.0	46.4	226	
480	min	Winter	11.545	0.0	49.4	290	
600	min	Winter	9.667	0.0	51.7	354	
720	min	Winter	8.358	0.0	53.6	418	
960	min	Winter	6.638	0.0	56.7	544	
1440	min	Winter	4.791	0.0	61.1	784	
2160	min	Winter	3.452	0.0	65.4	1136	
2880	min	Winter	2.733	0.0	68.4	1500	
4320	min	Winter	1.964	0.0	72.3	2256	
5760	min	Winter	1.552	0.0	74.7	2944	
7200	min	Winter	1.292	0.0	76.2	3648	
8640	min	Winter	1.112	0.0	77.1	4408	
10080	min	Winter	0.980	0.0	77.6	5128	
		C	1982-20	20 Inno	vyze		

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-01	Micro
Date 11/03/2022 13:16	Designed by JPS	Desinargo
File SY-05 Cascade.casx	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for PP-02.srcx

Storage is Online Cover Level (m) 4.500

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	18.0
Membrane Percolation (mm/hr)	1000	Length (m)	38.6
Max Percolation (l/s)	193.0	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	4.200	Cap Volume Depth (m)	0.300

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	100.0	Coefficient of Contraction	0.600
Length (m)	10.000	Upstream Invert Level (m)	4.200
Roughness k (mm)	0.600		

EAS Transport Planning						
Unit 23, The Maltings	Anglia Square					
Stanstead Abbotts	SY-05					
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro				
Date 11/03/2022 13:17	Designed by JPS	Dcainago				
File SY-05 Cascade.casx	Checked by	brainage				
Innovyze	Source Control 2020.1.3	ŀ				

Cascade Summary of Results for SY-05.srcx

Upstream Outflow To Overflow To Structures

PP-02.srcx (None) (None)

Half Drain Time : 63 minutes.

	Storr Event	n E	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
15	min S	Summer	3.178	0.798	0.0	20.0	20.0	81.8	ОК
30	min S	Summer	3.387	1.007	0.0	20.0	20.0	103.3	ΟK
60	min S	Summer	3.498	1.118	0.0	20.0	20.0	114.7	ΟK
120	min S	Summer	3.471	1.091	0.0	20.0	20.0	112.0	ΟK
180	min S	Summer	3.397	1.017	0.0	20.0	20.0	104.3	ΟK
240	min S	Summer	3.310	0.930	0.0	20.0	20.0	95.5	ΟK
360	min S	Summer	3.142	0.762	0.0	20.0	20.0	78.2	ΟK
480	min S	Summer	2.992	0.612	0.0	20.0	20.0	62.8	ΟK
600	min S	Summer	2.862	0.482	0.0	20.0	20.0	49.4	ΟK
720	min S	Summer	2.756	0.376	0.0	20.0	20.0	38.5	ΟK
960	min S	Summer	2.615	0.235	0.0	20.0	20.0	24.2	ΟK
1440	min S	Summer	2.545	0.165	0.0	16.5	16.5	16.9	ΟK
2160	min S	Summer	2.503	0.123	0.0	12.3	12.3	12.6	ΟK
2880	min S	Summer	2.479	0.099	0.0	9.9	9.9	10.2	ΟK
4320	min S	Summer	2.452	0.072	0.0	7.2	7.2	7.3	ΟK
5760	min S	Summer	2.437	0.057	0.0	5.7	5.7	5.8	ΟK
7200	min S	Summer	2.428	0.048	0.0	4.8	4.8	4.9	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Time-Peak (mins)
15	min	Summer	138.874	0.0	115.2	23
30	min	Summer	90.946	0.0	151.9	35
60	min	Summer	56.713	0.0	190.4	60
120	min	Summer	34.162	0.0	230.0	94
180	min	Summer	25.057	0.0	253.3	128
240	min	Summer	19.992	0.0	269.6	162
360	min	Summer	14.500	0.0	293.5	228
480	min	Summer	11.545	0.0	311.6	290
600	min	Summer	9.667	0.0	326.2	350
720	min	Summer	8.358	0.0	338.4	406
960	min	Summer	6.638	0.0	358.3	510
1440	min	Summer	4.791	0.0	387.6	740
2160	min	Summer	3.452	0.0	418.4	1104
2880	min	Summer	2.733	0.0	441.0	1472
4320	min	Summer	1.964	0.0	473.9	2200
5760	min	Summer	1.552	0.0	497.8	2936
7200	min	Summer	1.292	0.0	516.5	3664
		C	1982-20	20 Inno	ovyze	

EAS Transport Planning		Page 2
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-05	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:17	Designed by JPS	Dcainago
File SY-05 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	·

Cascade Summary of Results for SY-05.srcx

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	n Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
8640	min S	Summer	2.421	0.041	0.0	9.1	4.1	4.2	ОК
10080	min S	Summer	2.416	0.036	0.0	3.6	3.6	3.7	ΟK
15	min V	Vinter	3.293	0.913	0.0	20.0	20.0	93.6	ΟK
30	min V	Vinter	3.538	1.158	0.0	20.0	20.0	118.8	ΟK
60	min V	Vinter	3.686	1.306	0.0	20.0	20.0	134.0	ΟK
120	min V	Vinter	3.651	1.271	0.0	20.0	20.0	130.4	ΟK
180	min V	Vinter	3.540	1.160	0.0	20.0	20.0	119.0	ΟK
240	min V	Vinter	3.407	1.027	0.0	20.0	20.0	105.3	ΟK
360	min V	Vinter	3.143	0.763	0.0	20.0	20.0	78.3	ΟK
480	min V	Vinter	2.913	0.533	0.0	20.0	20.0	54.7	ΟK
600	min V	Vinter	2.728	0.348	0.0	20.0	20.0	35.7	O K
720	min V	Vinter	2.605	0.225	0.0	20.0	20.0	23.1	O K
960	min V	Vinter	2.550	0.170	0.0	17.0	17.0	17.5	O K
1440	min V	Vinter	2.506	0.126	0.0	12.6	12.6	12.9	O K
2160	min V	Vinter	2.472	0.092	0.0	9.2	9.2	9.4	O K
2880	min V	Vinter	2.453	0.073	0.0	7.3	7.3	7.4	O K
4320	min V	Vinter	2.432	0.052	0.0	5.2	5.2	5.4	O K
5760	min V	Vinter	2.422	0.042	0.0	9 4.2	4.2	4.3	O K
7200	min V	Vinter	2.415	0.035	0.0) 3.5	3.5	3.5	O K
8640	min V	Vinter	2.410	0.030	0.0) 3.0	3.0	3.0	O K
10080	min V	Vinter	2.406	0.026	0.0	2.6	2.6	2.7	O K

	Rain	Flooded	Discharge	Time-Peak		
	Event	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
8640	min Summ	er 1.112	0.0	531.8	4400	
10080	min Summ	er 0.980	0.0	544.8	5096	
15	min Wint	er 138.874	0.0	129.4	23	
30	min Wint	er 90.946	0.0	170.6	36	
60	min Wint	er 56.713	0.0	213.7	62	
120	min Wint	er 34.162	0.0	258.0	102	
180	min Wint	er 25.057	0.0	284.2	140	
240	min Wint	er 19.992	0.0	302.4	176	
360	min Wint	er 14.500	0.0	329.2	244	
480	min Wint	er 11.545	0.0	349.6	306	
600	min Wint	er 9.667	0.0	365.9	360	
720	min Wint	er 8.358	0.0	379.6	402	
960	min Wint	er 6.638	0.0	401.9	506	
1440	min Wint	er 4.791	0.0	434.8	744	
2160	min Wint	er 3.452	0.0	469.4	1104	
2880	min Wint	er 2.733	0.0	494.9	1468	
4320	min Wint	er 1.964	0.0	532.0	2208	
5760	min Wint	er 1.552	0.0	559.0	2936	
7200	min Wint	er 1.292	0.0	580.3	3664	
8640	min Wint	er 1.112	0.0	597.8	4376	
10080	min Wint	er 0.980	0.0	612.6	5112	
		©1982-20	20 Inno	vyze		

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-05	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:17	Designed by JPS	Desinario
File SY-05 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for SY-05.srcx

Storage is Online Cover Level (m) 4.500

Cellular Storage Structure

Invert Level (m) 2.380 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	108.0	0.0	1.321	0.0	0.0
1.320	108.0	0.0			

Pump Outflow Control

Invert Level (m) 2.380

Depth (m)	Flow (l/s)						
0.200	20.0000	0.600	20.0000	1.000	20.0000	1.400	20.0000
0.400	20.0000	0.800	20.0000	1.200	20.0000	6.000	20.0000

EAS Transport Planning		Page 1
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-06 PP-03	Micro
Date 11/03/2022 13:18	Designed by JPS	Dcainago
File SY-06 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	·

Cascade Summary of Results for PP-03.srcx

Upstream Outflow To Overflow To Structures

(None) SY-06.srcx (None)

Half Drain Time : 38 minutes.

	Stor Even	rm It	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
15	min	Summer	3.972	0.072	0.0	2.2	2.2	8.2	ОК
30	min	Summer	3.988	0.088	0.0	3.0	3.0	10.4	ОК
60	min	Summer	3.997	0.097	0.0	3.6	3.6	11.7	ОК
120	min	Summer	4.000	0.100	0.0	3.8	3.8	12.1	Flood Risk
180	min	Summer	3.998	0.098	0.0	3.6	3.6	11.8	ОК
240	min	Summer	3.995	0.095	0.0	3.4	3.4	11.3	ОК
360	min	Summer	3.988	0.088	0.0	3.0	3.0	10.4	ОК
480	min	Summer	3.982	0.082	0.0	2.7	2.7	9.6	ОК
600	min	Summer	3.976	0.076	0.0	2.4	2.4	8.9	ОК
720	min	Summer	3.972	0.072	0.0	2.2	2.2	8.3	ОК
960	min	Summer	3.965	0.065	0.0	1.9	1.9	7.3	ОК
1440	min	Summer	3.956	0.056	0.0	1.5	1.5	6.1	ОК
2160	min	Summer	3.950	0.050	0.0	1.2	1.2	5.2	ОК
2880	min	Summer	3.945	0.045	0.0	0.9	0.9	4.5	ОК
4320	min	Summer	3.938	0.038	0.0	0.7	0.7	3.6	ОК
5760	min	Summer	3.934	0.034	0.0	0.5	0.5	3.0	ОК
7200	min	Summer	3.931	0.031	0.0	0.4	0.4	2.7	ОК

	Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.874	0.0	9.4	22
30	min	Summer	90.946	0.0	13.0	32
60	min	Summer	56.713	0.0	16.8	50
120	min	Summer	34.162	0.0	20.7	82
180	min	Summer	25.057	0.0	22.9	114
240	min	Summer	19.992	0.0	24.5	148
360	min	Summer	14.500	0.0	26.7	210
480	min	Summer	11.545	0.0	28.4	272
600	min	Summer	9.667	0.0	29.8	334
720	min	Summer	8.358	0.0	30.9	396
960	min	Summer	6.638	0.0	32.7	516
1440	min	Summer	4.791	0.0	35.2	756
2160	min	Summer	3.452	0.0	37.6	1124
2880	min	Summer	2.733	0.0	39.3	1484
4320	min	Summer	1.964	0.0	41.4	2208
5760	min	Summer	1.552	0.0	42.6	2944
7200	min	Summer	1.292	0.0	43.3	3680
		C	1982-20	20 Inno	ovyze	

EAS Transport Planning				
Unit 23, The Maltings	Anglia Square			
Stanstead Abbotts	lin100yr+40%CC			
Hertfordshire, SG12 8HG	SY-06 PP-03	Micro		
Date 11/03/2022 13:18	Designed by JPS	Desinarro		
File SY-06 Cascade.casx	Checked by	Drainage		
Innovyze	Source Control 2020.1.3			

Cascade Summary of Results for PP-03.srcx

Storm		Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(l/s)	(l/s)	(m³)	
0.040	min Cum		0 0 0 0 0	0.0	0 1	0 4	2 2	0 1/
8640	min Summ	ler 3.928	3 0.028	0.0	0.4	0.4	2.3	O K
10080	min Summ	ter 3.92	0.027	0.0	0.3	0.3	2.1	0 K
15	min Wint	er 3.980	0.080	0.0	2.6	2.6	9.4	ОК
30	min Wint	er 3.998	3 0.098	0.0	3.6	3.6	11.8	0 K
60	min Wint	er 4.007	0.107	0.0	4.2	4.2	13.0	Flood Risk
120	min Wint	er 4.00	0.107	0.0	4.2	4.2	13.0	Flood Risk
180	min Wint	er 4.001	0.101	0.0	3.8	3.8	12.2	Flood Risk
240	min Wint	er 3.995	5 0.095	0.0	3.5	3.5	11.4	O K
360	min Wint	er 3.985	5 0.085	0.0	2.9	2.9	10.1	O K
480	min Wint	er 3.978	3 0.078	0.0	2.5	2.5	9.0	O K
600	min Wint	er 3.971	0.071	0.0	2.2	2.2	8.1	O K
720	min Wint	er 3.960	5 0.066	0.0	2.0	2.0	7.4	ОК
960	min Wint	er 3.958	3 0.058	0.0	1.6	1.6	6.4	ΟK
1440	min Wint	er 3.951	0.051	0.0	1.2	1.2	5.4	0 K
2160	min Wint	er 3.944	0.044	0.0	0.9	0.9	4.4	ОК
2880	min Wint	er 3.938	3 0.038	0.0	0.7	0.7	3.7	ОК
4320	min Wint	er 3.93	3 0.033	0.0	0.5	0.5	2.9	0 K
5760	min Wint	rar 3 920	0 029	0.0	0 4	0 4	2 4	0 K
7200	min Wint	rar = 3.924	5 0 026	0.0	0.3	0.1	2.1	0 K
9640	min Wint	rar = 3.920		0.0	0.3	0.3	2.0	O K
10000	min Mint	.er 3.924	0.024	0.0	0.3	0.3	1 -	O K
T0080	min wint	.er 3.923	0.023	0.0	0.2	0.2	1.5	υĸ

Storm			Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	1.112	0.0	43.6	4408	
10080	min	Summer	0.980	0.0	43.7	5136	
15	min	Winter	138.874	0.0	10.8	23	
30	min	Winter	90.946	0.0	14.9	33	
60	min	Winter	56.713	0.0	19.1	52	
120	min	Winter	34.162	0.0	23.4	86	
180	min	Winter	25.057	0.0	26.0	120	
240	min	Winter	19.992	0.0	27.7	154	
360	min	Winter	14.500	0.0	30.3	220	
480	min	Winter	11.545	0.0	32.2	282	
600	min	Winter	9.667	0.0	33.7	346	
720	min	Winter	8.358	0.0	35.0	406	
960	min	Winter	6.638	0.0	37.0	522	
1440	min	Winter	4.791	0.0	39.8	766	
2160	min	Winter	3.452	0.0	42.7	1144	
2880	min	Winter	2.733	0.0	44.6	1508	
4320	min	Winter	1.964	0.0	47.1	2252	
5760	min	Winter	1.552	0.0	48.7	2952	
7200	min	Winter	1.292	0.0	49.6	3712	
8640	min	Winter	1.112	0.0	50.2	4496	
10080	min	Winter	0.980	0.0	50.6	5176	
		C	1982-20	20 Inno	vyze		

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-06 PP-03	Micro
Date 11/03/2022 13:18	Designed by JPS	Desinargo
File SY-06 Cascade.casx	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for PP-03.srcx

Storage is Online Cover Level (m) 4.300

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	22.7
Max Percolation (l/s)	126.1	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	3.900	Cap Volume Depth (m)	0.300

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	100.0	Coefficient of Contraction	0.600
Length (m)	10.000	Upstream Invert Level (m)	3.900
Roughness k (mm)	0.600		

EAS Transport Planning		Page 1
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-06 PP-04	Micro
Date 11/03/2022 13:18	Designed by JPS	Dcainago
File SY-06 Cascade.casx	Checked by	Diamage
Innovyze	Source Control 2020.1.3	l.

Cascade Summary of Results for PP-04.srcx

Upstream Outflow To Overflow To Structures

(None) SY-06.srcx (None)

Half Drain Time : 32 minutes.

	Stor Even	rm It	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status
15	min	Summer	4.313	0.113	0.0	10.2	10.2	20.4	Flood Risk
30	min	Summer	4.330	0.130	0.0	10.4	10.4	26.9	Flood Risk
60	min	Summer	4.333	0.133	0.0	10.5	10.5	28.5	Flood Risk
120	min	Summer	4.325	0.125	0.0	10.4	10.4	25.1	Flood Risk
180	min	Summer	4.314	0.114	0.0	10.2	10.2	20.8	Flood Risk
240	min	Summer	4.302	0.102	0.0	10.1	10.1	16.5	Flood Risk
360	min	Summer	4.277	0.077	0.0	9.8	9.8	9.6	Flood Risk
480	min	Summer	4.255	0.055	0.0	9.5	9.5	4.9	Flood Risk
600	min	Summer	4.234	0.034	0.0	9.2	9.2	1.9	Flood Risk
720	min	Summer	4.214	0.014	0.0	8.9	8.9	0.3	Flood Risk
960	min	Summer	4.200	0.000	0.0	7.4	7.4	0.0	O K
1440	min	Summer	4.200	0.000	0.0	5.4	5.4	0.0	O K
2160	min	Summer	4.200	0.000	0.0	3.8	3.8	0.0	O K
2880	min	Summer	4.200	0.000	0.0	3.0	3.0	0.0	O K
4320	min	Summer	4.200	0.000	0.0	2.2	2.2	0.0	0 K
5760	min	Summer	4.200	0.000	0.0	1.7	1.7	0.0	O K
7200	min	Summer	4.200	0.000	0.0	1.4	1.4	0.0	O K

	Stoi Ever	rm nt	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.874	0.0	28.9	21
30	min	Summer	90.946	0.0	40.0	32
60	min	Summer	56.713	0.0	51.6	50
120	min	Summer	34.162	0.0	63.8	84
180	min	Summer	25.057	0.0	70.1	116
240	min	Summer	19.992	0.0	75.0	148
360	min	Summer	14.500	0.0	82.2	208
480	min	Summer	11.545	0.0	87.2	266
600	min	Summer	9.667	0.0	91.2	320
720	min	Summer	8.358	0.0	94.8	374
960	min	Summer	6.638	0.0	100.2	0
1440	min	Summer	4.791	0.0	107.9	0
2160	min	Summer	3.452	0.0	115.4	0
2880	min	Summer	2.733	0.0	120.5	0
4320	min	Summer	1.964	0.0	126.9	0
5760	min	Summer	1.552	0.0	130.6	0
7200	min	Summer	1.292	0.0	132.7	0
		C	1982-20	20 Inno	ovyze	

EAS Transport Planning		
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-06 PP-04	Micro
Date 11/03/2022 13:18	Designed by JPS	Desinario
File SY-06 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	•

Cascade Summary of Results for PP-04.srcx

Storm			Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(l/s)	(l/s)	(m³)	
0 (1 0	min C		1 200	0 000	0.0	1 0	1 0	0 0	O IZ
10000	min S	unner	4.200	0.000	0.0	1.2	1.2	0.0	O K
10080	min S	ummer	4.200	0.000	0.0	1.1	1.1	0.0	UK
15	min W	inter	4.323	0.123	0.0	10.3	10.3	24.1	Flood Risk
30	min W	linter	4.341	0.141	0.0	10.6	10.6	31.7	Flood Risk
60	min W	linter	4.345	0.145	0.0	10.6	10.6	33.2	Flood Risk
120	min W	linter	4.332	0.132	0.0	10.5	10.5	28.0	Flood Risk
180	min W	linter	4.315	0.115	0.0	10.2	10.2	21.2	Flood Risk
240	min W	linter	4.296	0.096	0.0	10.0	10.0	14.9	Flood Risk
360	min W	linter	4.258	0.058	0.0	9.5	9.5	5.4	Flood Risk
480	min W	linter	4.218	0.018	0.0	9.0	9.0	0.5	Flood Risk
600	min W	linter	4.200	0.000	0.0	7.8	7.8	0.0	O K
720	min W	linter	4.200	0.000	0.0	6.8	6.8	0.0	O K
960	min W	linter	4.200	0.000	0.0	5.4	5.4	0.0	O K
1440	min W	linter	4.200	0.000	0.0	3.9	3.9	0.0	ОК
2160	min W	linter	4.200	0.000	0.0	2.8	2.8	0.0	ОК
2880	min W	linter	4.200	0.000	0.0	2.2	2.2	0.0	ОК
4320	min W	linter	4.200	0.000	0.0	1.6	1.6	0.0	0 K
5760	min W	linter	4.200	0.000	0.0	1.2	1.2	0.0	0 K
7200	min W	linter	4 200	0 000	0.0	1 0	1 0	0.0	0 K
8640	min W	lintor	1 200	0 000	0.0	1.0	1.0	0.0	O K
10000	min W	lintor	4 200	0.000	0.0	0.9	0.9	0.0	O K
10080	IIIII W	rincer	4.200	0.000	0.0	0.7	0.7	0.0	ΟK

	Storm			Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
9640	min	Cummor	1 110	0 0	122 0	0
10090	min	Summor	1.112	0.0	124 2	0
10000	III III	Summer	120.900	0.0	104.2	0
10	min	winter	138.8/4	0.0	33.1	22
30	mın	winter	90.946	0.0	45.6	33
60	min	Winter	56.713	0.0	58.0	54
120	min	Winter	34.162	0.0	71.7	90
180	min	Winter	25.057	0.0	79.3	124
240	min	Winter	19.992	0.0	85.3	156
360	min	Winter	14.500	0.0	92.8	214
480	min	Winter	11.545	0.0	98.7	260
600	min	Winter	9.667	0.0	103.3	0
720	min	Winter	8.358	0.0	107.2	0
960	min	Winter	6.638	0.0	113.4	0
1440	min	Winter	4.791	0.0	122.2	0
2160	min	Winter	3.452	0.0	130.9	0
2880	min	Winter	2.733	0.0	136.9	0
4320	min	Winter	1.964	0.0	144.6	0
5760	min	Winter	1.552	0.0	149.3	0
7200	min	Winter	1.292	0.0	152.3	0
8640	min	Winter	1.112	0.0	154.1	0
10080	min	Winter	0.980	0.0	155.2	0
		C	1982-20	20 Inno	vyze	

EAS Transport Planning					
Unit 23, The Maltings	Anglia Square				
Stanstead Abbotts	lin100yr+40%CC				
Hertfordshire, SG12 8HG	SY-06 PP-04	Micro			
Date 11/03/2022 13:18	Designed by JPS	Desinargo			
File SY-06 Cascade.casx	Checked by	Diamage			
Innovyze	Source Control 2020.1.3				

Cascade Model Details for PP-04.srcx

Storage is Online Cover Level (m) 4.500

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	10.7
Membrane Percolation (mm/hr)	1000	Length (m)	130.0
Max Percolation (l/s)	386.4	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	4.200	Cap Volume Depth (m)	0.300

Pipe Outflow Control

Diameter (m)	0.100	Entry Loss Coefficient	0.500
Slope (1:X)	100.0	Coefficient of Contraction	0.600
Length (m)	10.000	Upstream Invert Level (m)	3.900
Roughness k (mm)	0.600		

EAS Transport Planning		Page 1
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-06	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:19	Designed by JPS	Desinario
File SY-06 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for SY-06.srcx

Upstream Outflow To Overflow To Structures

PP-04.srcx	(None)	(None)
PP-03.srcx		

Half Drain Time : 178 minutes.

	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	2.712	0.532	0.0	10.0	10.0	83.4	ОК
30	min	Summer	2.891	0.711	0.0	10.0	10.0	111.4	ΟK
60	min	Summer	3.077	0.897	0.0	10.0	10.0	140.6	ΟK
120	min	Summer	3.254	1.074	0.0	10.0	10.0	168.4	ΟK
180	min	Summer	3.316	1.136	0.0	10.0	10.0	178.1	ΟK
240	min	Summer	3.294	1.114	0.0	10.0	10.0	174.5	ΟK
360	min	Summer	3.237	1.057	0.0	10.0	10.0	165.6	ΟK
480	min	Summer	3.173	0.993	0.0	10.0	10.0	155.7	ΟK
600	min	Summer	3.109	0.929	0.0	10.0	10.0	145.6	ΟK
720	min	Summer	3.046	0.866	0.0	10.0	10.0	135.8	ΟK
960	min	Summer	2.923	0.743	0.0	10.0	10.0	116.4	ΟK
1440	min	Summer	2.708	0.528	0.0	10.0	10.0	82.8	O K
2160	min	Summer	2.487	0.307	0.0	10.0	10.0	48.1	O K
2880	min	Summer	2.381	0.201	0.0	10.0	10.0	31.5	ΟK
4320	min	Summer	2.330	0.150	0.0	7.5	7.5	23.5	O K
5760	min	Summer	2.300	0.120	0.0	6.0	6.0	18.8	O K
7200	min	Summer	2.281	0.101	0.0	5.0	5.0	15.8	O K

	Stor	rm	Rain	Flooded	Discharge	Time-Peak	
	Ever	nt	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	138 874	0 0	118 0	57	
30	min	Summer	90 946	0.0	157 3	81	
60	min	Summer	56.713	0.0	198.5	108	
120	min	Summer	34.162	0.0	241.1	146	
180	min	Summer	25.057	0.0	265.5	178	
240	min	Summer	19.992	0.0	283.0	202	
360	min	Summer	14.500	0.0	308.6	264	
480	min	Summer	11.545	0.0	327.5	330	
600	min	Summer	9.667	0.0	342.8	398	
720	min	Summer	8.358	0.0	355.8	464	
960	min	Summer	6.638	0.0	376.5	594	
1440	min	Summer	4.791	0.0	406.8	840	
2160	min	Summer	3.452	0.0	438.2	1176	
2880	min	Summer	2.733	0.0	460.8	1480	
4320	min	Summer	1.964	0.0	492.7	2208	
5760	min	Summer	1.552	0.0	515.1	2944	
7200	min	Summer	1.292	0.0	531.8	3672	
		C	1982-20	20 Inno	ovvze		

EAS Transport Planning		Page 2
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-06	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:19	Designed by JPS	Dcainago
File SY-06 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for SY-06.srcx

	Storm Event	1	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
8640	min S	Summer	2.267	0.087	0.0	4.3	4.3	13.6	ОК
10080	min S	Summer	2.257	0.077	0.0	3.8	3.8	12.0	ОК
15	min V	Winter	2.783	0.603	0.0	10.0	10.0	94.6	ΟK
30	min V	Winter	2.986	0.806	0.0	10.0	10.0	126.3	ОК
60	min V	Winter	3.197	1.017	0.0	10.0	10.0	159.4	ΟK
120	min V	Winter	3.401	1.221	0.0	10.0	10.0	191.4	ОК
180	min V	Winter	3.497	1.317	0.0	10.0	10.0	206.4	ОК
240	min V	Winter	3.483	1.303	0.0	10.0	10.0	204.3	ΟK
360	min V	Winter	3.396	1.216	0.0	10.0	10.0	190.6	ОК
480	min V	Winter	3.305	1.125	0.0	10.0	10.0	176.4	ОК
600	min V	Winter	3.207	1.027	0.0	10.0	10.0	161.0	ОК
720	min V	Winter	3.108	0.928	0.0	10.0	10.0	145.4	ОК
960	min V	Winter	2.917	0.737	0.0	10.0	10.0	115.5	ΟK
1440	min V	Winter	2.599	0.419	0.0	10.0	10.0	65.7	ОК
2160	min V	Winter	2.372	0.192	0.0	9.6	9.6	30.1	ОК
2880	min V	Winter	2.334	0.154	0.0	7.7	7.7	24.1	ОК
4320	min V	Winter	2.291	0.111	0.0	5.6	5.6	17.4	ΟK
5760	min V	Winter	2.268	0.088	0.0	4.4	4.4	13.8	ΟK
7200	min V	Winter	2.253	0.073	0.0	3.7	3.7	11.4	ОК
8640	min V	Winter	2.243	0.063	0.0	3.1	3.1	9.8	ΟK
10080	min V	Winter	2.235	0.055	0.0	2.8	2.8	8.6	ΟK

	Storm			Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	1.112	0.0	545.0	4408	
10080	min	Summer	0.980	0.0	555.6	5136	
15	min	Winter	138.874	0.0	133.1	64	
30	min	Winter	90.946	0.0	177.3	89	
60	min	Winter	56.713	0.0	222.8	116	
120	min	Winter	34.162	0.0	270.6	154	
180	min	Winter	25.057	0.0	298.5	186	
240	min	Winter	19.992	0.0	318.5	228	
360	min	Winter	14.500	0.0	346.7	284	
480	min	Winter	11.545	0.0	368.3	358	
600	min	Winter	9.667	0.0	385.4	432	
720	min	Winter	8.358	0.0	399.9	502	
960	min	Winter	6.638	0.0	423.3	634	
1440	min	Winter	4.791	0.0	457.6	870	
2160	min	Winter	3.452	0.0	492.9	1132	
2880	min	Winter	2.733	0.0	518.6	1500	
4320	min	Winter	1.964	0.0	555.2	2208	
5760	min	Winter	1.552	0.0	580.9	2944	
7200	min	Winter	1.292	0.0	600.5	3656	
8640	min	Winter	1.112	0.0	616.1	4400	
10080	min	Winter	0.980	0.0	628.8	5136	
		C	1982-20	20 Inno	vyze		

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-06	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:19	Designed by JPS	Desinarro
File SY-06 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for SY-06.srcx

Storage is Online Cover Level (m) 4.300

Cellular Storage Structure

Invert Level (m) 2.180 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	165.0	0.0	1.321	0.0	0.0
1.320	165.0	0.0			

Pump Outflow Control

Invert Level (m) 2.180

Depth (m) Flow	(1/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
0.20	0 10 0 10	0.0000	0. 0.	600 800	10 10	.0000	1. 1.	.000 .200	10 10	0.0000	1. 6.	400	10 10	.0000

LAS ILANS	port Plann	ning						Page 1
Unit 23,	The Maltin	ngs		Anglia	Square			
Stanstead	Abbotts			1in100y:	r+40%CC			
Hertfords	hire, SG12	2 8HG		SY-07 PI	P-05			Micco
Date 11/0	3/2022 14	• 51		Designer	d by JP	S		
File SV 0	7 Coggodo			Checked	hr	~		Drainage
FILE SI-0	/ Cascade	.Casx			yu r	0000 1 0		
Innovyze				Source	Control	2020.1.3	3	
	0] .	C		+		CDCV	
	Las	cade	Summar	ry of Resul	ts for	PP-05 ma	.SRUX	
			Instrop		T e OT e	flow To		
		C -	tructur		10 Over	110w 10		
		5	cruccur	e5				
			(Non	e) SY-07 md.5	SRCX	(None)		
			Half	Drain Time :	424 minu	ites.		
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/e)	(1/s)	(m ³)	
		(111)	()	(1)0)	(1/3)	(1/0/	()	
15	min Summer	3.742	0.092	0.0	0.5	0.5	13.6	ОК
15	min Summer min Summer	3.742 3.767	0.092	0.0	0.5	0.5	13.6 18.6	0 K 0 K
15 30 60	min Summer min Summer min Summer	3.742 3.767 3.791	0.092 0.117 0.141	0.0 0.0 0.0	0.5 0.6 0.7	0.5 0.6 0.7	13.6 18.6 23.5	0 K 0 K 0 K
15 30 60 120	min Summer min Summer min Summer min Summer	3.742 3.767 3.791 3.812	0.092 0.117 0.141 0.162	0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7	0.5 0.6 0.7 0.7	13.6 18.6 23.5 27.7	O K O K O K Flood Risk
15 30 60 120 180	min Summer min Summer min Summer min Summer min Summer	3.742 3.767 3.791 3.812 3.820	0.092 0.117 0.141 0.162 0.170	0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7	0.5 0.6 0.7 0.7 0.7	13.6 18.6 23.5 27.7 29.5	O K O K O K Flood Risk Flood Risk
15 30 60 120 180 240	min Summer min Summer min Summer min Summer min Summer min Summer	3.742 3.767 3.791 3.812 3.820 3.824	0.092 0.117 0.141 0.162 0.170 0.174	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7	0.5 0.6 0.7 0.7 0.7 0.7	13.6 18.6 23.5 27.7 29.5 30.1	O K O K O K Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3.742 3.767 3.791 3.812 3.820 3.824 3.825	0.092 0.117 0.141 0.162 0.170 0.174 0.175	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8	0.5 0.6 0.7 0.7 0.7 0.7 0.8	13.6 18.6 23.5 27.7 29.5 30.1 30.4	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360 480	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360 480 600	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.825 3.824	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.175	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360 480 600 720	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.825 3.824 3.822	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.174 0.172	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1 29.8	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360 480 600 720 960	min Summer min Summer	<pre>(m) 3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.825 3.824 3.822 3.818</pre>	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.175 0.174 0.172 0.168	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1 29.8 29.0	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360 480 600 720 960 1440	min Summer min Summer	<pre>(m) 3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.825 3.824 3.822 3.818 3.808</pre>	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.175 0.174 0.172 0.168 0.158	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1 29.8 29.0 27.0	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360 480 600 720 960 1440 2160	min Summer min Summer	<pre>(m) 3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.824 3.825 3.824 3.822 3.818 3.808 3.793</pre>	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.175 0.174 0.172 0.168 0.158 0.143	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1 29.8 29.0 27.0 23.8	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min Summer min Summer	<pre>(m) 3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.824 3.822 3.818 3.808 3.793 3.779</pre>	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.175 0.174 0.172 0.168 0.158 0.143 0.129	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1 29.8 29.0 27.0 23.8 21.0	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min Summer min Summer	<pre>(m) 3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.824 3.822 3.818 3.808 3.793 3.779 3.757</pre>	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.175 0.174 0.172 0.168 0.158 0.143 0.129 0.107	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.6 0.6	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1 29.8 29.0 27.0 23.8 21.0 16.6	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K
15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Summer min Summer	<pre>(m) 3.742 3.767 3.791 3.812 3.820 3.824 3.825 3.825 3.824 3.822 3.818 3.808 3.793 3.779 3.757 3.741</pre>	0.092 0.117 0.141 0.162 0.170 0.174 0.175 0.175 0.175 0.174 0.172 0.168 0.158 0.143 0.129 0.107 0.091	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 0.6 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5	0.5 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.5	13.6 18.6 23.5 27.7 29.5 30.1 30.4 30.3 30.1 29.8 29.0 27.0 23.8 21.0 16.6 13.3	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	138.874	0.0	14.0	26
30	min	Summer	90.946	0.0	19.4	40
60	min	Summer	56.713	0.0	25.0	68
120	min	Summer	34.162	0.0	30.8	126
180	min	Summer	25.057	0.0	34.1	184
240	min	Summer	19.992	0.0	36.5	242
360	min	Summer	14.500	0.0	39.8	322
480	min	Summer	11.545	0.0	42.3	382
600	min	Summer	9.667	0.0	44.3	444
720	min	Summer	8.358	0.0	46.0	510
960	min	Summer	6.638	0.0	48.6	648
1440	min	Summer	4.791	0.0	52.4	920
2160	min	Summer	3.452	0.0	56.0	1324
2880	min	Summer	2.733	0.0	58.5	1712
4320	min	Summer	1.964	0.0	61.6	2468
5760	min	Summer	1.552	0.0	63.4	3224
7200	min	Summer	1.292	0.0	64.4	3904
			1000 00	20 Trans		
		C	1982-20	20 Inno	ovyze	

EAS Transport Planning		Page 2
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-07 PP-05	Micro
Date 11/03/2022 14:51	Designed by JPS	Desinario
File SY-07 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for PP-05 md.SRCX

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(l/s)	(m³)	
0640	min C		2 710	0 060	0.0	0 1	0 1	0 0	O K
10090	min C	Summor	3 712	0.009	0.0	0.4	0.4		O K
10000	min M	lint or	2 752	0.002	0.0	0.4	0.4	15 7	O K
10	min M	vinter Vinter	2 700	0.102	0.0	0.0	0.0	1J./ 01 0	0 K
50	IIIII W	vincer	3.780	0.150	0.0	0.0	0.0	21.3	
60	mın W	linter	3.808	0.158	0.0	0./	0./	26.9	Flood Risk
120	min W	linter	3.831	0.181	0.0	0.8	0.8	31.7	Flood Risk
180	min W	linter	3.842	0.192	0.0	0.8	0.8	33.7	Flood Risk
240	min W	linter	3.846	0.196	0.0	0.8	0.8	34.6	Flood Risk
360	min W	linter	3.848	0.198	0.0	0.8	0.8	35.0	Flood Risk
480	min W	linter	3.846	0.196	0.0	0.8	0.8	34.7	Flood Risk
600	min W	linter	3.845	0.195	0.0	0.8	0.8	34.3	Flood Risk
720	min W	linter	3.842	0.192	0.0	0.8	0.8	33.8	Flood Risk
960	min W	linter	3.836	0.186	0.0	0.8	0.8	32.5	Flood Risk
1440	min W	linter	3.820	0.170	0.0	0.7	0.7	29.4	Flood Risk
2160	min W	linter	3.798	0.148	0.0	0.7	0.7	24.9	ОК
2880	min W	linter	3.779	0.129	0.0	0.6	0.6	21.0	ОК
4320	min W	linter	3.750	0.100	0.0	0.5	0.5	15.1	ОК
5760	min W	linter	3.730	0.080	0.0	0.5	0.5	11.0	ОК
7200	min W	linter	3 716	0 066	0 0	0 4	0 4	8 2	0 K
8640	min W	linter	3 705	0 055	0.0	0.4	0 4	6 2	O K
10090	min M	lintor	3 600	0.010	0.0	0.7	0.7	1 7	0 1
10090	III II W	vincer.	2.090	0.048	0.0	0.5	0.5	4./	ΟK

	Storm			Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	1.112	0.0	65.0	4664	
10080	min	Summer	0.980	0.0	65.2	5352	
15	min	Winter	138.874	0.0	16.1	26	
30	min	Winter	90.946	0.0	22.1	40	
60	min	Winter	56.713	0.0	28.4	68	
120	min	Winter	34.162	0.0	34.9	124	
180	min	Winter	25.057	0.0	38.7	182	
240	min	Winter	19.992	0.0	41.3	238	
360	min	Winter	14.500	0.0	45.1	346	
480	min	Winter	11.545	0.0	47.9	400	
600	min	Winter	9.667	0.0	50.2	470	
720	min	Winter	8.358	0.0	52.1	546	
960	min	Winter	6.638	0.0	55.0	700	
1440	min	Winter	4.791	0.0	59.3	996	
2160	min	Winter	3.452	0.0	63.5	1412	
2880	min	Winter	2.733	0.0	66.4	1820	
4320	min	Winter	1.964	0.0	70.2	2596	
5760	min	Winter	1.552	0.0	72.5	3336	
7200	min	Winter	1.292	0.0	73.9	4040	
8640	min	Winter	1.112	0.0	74.8	4752	
10080	min	Winter	0.980	0.0	75.4	5360	
		C	1982-20	20 Inno	vyze		

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	1in100yr+40%CC	
Hertfordshire, SG12 8HG	SY-07 PP-05	Micro
Date 11/03/2022 14:51	Designed by JPS	Dcainago
File SY-07 Cascade.casx	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for PP-05 md.SRCX

Storage is Online Cover Level (m) 4.100

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	13.5
Membrane Percolation (mm/hr)	1000	Length (m)	50.0
Max Percolation (l/s)	187.5	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	3.650	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 3.650

EAS ITANSPORT PIAN	Page 1										
Unit 23, The Maltin											
Stanstead Abbotts											
Hertfordshire, SG12	Micro										
Date 11/03/2022 14:	51		Designed	d by JPS							
Eile CV 07 Casesda and Checked by											
rile Si-U/ Cascade.casx Checked by											
Innovyze			Source	Sontrol .	2020.1.3						
Cas	rando	Cummora	of Pocul	to for D	D-06 md	CDCV					
	scaue	Summary	OI Resul	LS IOF P	P-06 ma.	SRUA					
	1	Instream	Out flow	To Overf	Flow To						
	S	tructures	OUCTION	10 Overn	10 10						
		(None)	SY-07 md.5	SRCX	(None)						
		Ualf Dr	ain Timo .	207 minut							
		HAII DI	ain inne .	297 milliut							
Storm	Max	Max	Max	Max	Max	Max	Status				
Treest	T	D				-					
Event	rever	Depth In	filtration	Control S	E Outflow	Volume					
Event	(m)	(m)	(1/s)	Control Σ (1/s)	E Outflow (l/s)	Volume (m³)					
15 min Summer	(m)	(m) 0.079	(1/s)	(1/s) 0.5	Coutflow (1/s) 0.5	Volume (m ³) 9.1	ок				
15 min Summer 30 min Summer	(m) 3.729 3.754	(m) 0.079 0.104	(1/s) 0.0 0.0	Control Σ (1/s) 0.5 0.6	2 Outflow (1/s) 0.5 0.6	Volume (m ³) 9.1 12.4	0 K 0 K				
15 min Summer 30 min Summer 60 min Summer	(m) 3.729 3.754 3.777	(m) 0.079 0.104 0.127	(1/s) 0.0 0.0 0.0	Control Σ (1/s) 0.5 0.6 0.6	2 Outflow (1/s) 0.5 0.6 0.6	Volume (m ³) 9.1 12.4 15.5	0 K 0 K 0 K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer	(m) 3.729 3.754 3.777 3.795	(m) 0.079 0.104 0.127 0.145	(1/s) 0.0 0.0 0.0 0.0 0.0	Control Σ (1/s) 0.5 0.6 0.6 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7	Volume (m ³) 9.1 12.4 15.5 18.0	0 K 0 K 0 K 0 K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer	(m) 3.729 3.754 3.777 3.795 3.801	(m) 0.079 0.104 0.127 0.145 0.151	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0	Control Σ (1/s) 0.5 0.6 0.6 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8	O K O K O K Flood Risk				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803	(m) 0.079 0.104 0.127 0.145 0.151 0.153	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9	O K O K O K O K Flood Risk Flood Risk				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803	(m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0	O K O K O K O K Flood Risk Flood Risk Flood Risk				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803	(m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.153	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9	O K O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.801	(m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.153 0.151	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9	O K O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer 720 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.801 3.798	Depth In (m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.151 0.153 0.151 0.145	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 18.7 18.4	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer 960 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.801 3.798 3.793	(m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.153 0.151 0.148 0.143	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 18.7 18.4 17.6	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.801 3.798 3.793 3.780	(m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.153 0.151 0.148 0.143 0.130	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 18.7 18.4 17.6 15.9	O K O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K O K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 120 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.803 3.798 3.793 3.780 3.763	Depth In (m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.151 0.145 0.153 0.153 0.153 0.153 0.151 0.148 0.143 0.130	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 18.7 18.4 17.6 15.9 13.6	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K O K O K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 120 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.798 3.798 3.793 3.780 3.763 3.748	Depth In (m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.151 0.145 0.153 0.153 0.153 0.151 0.148 0.143 0.130 0.113 0.098	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 19.0 18.7 18.4 17.6 15.9 13.6 11.7	O K O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K O K O K O K O K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 240 min Summer 360 min Summer 480 min Summer 600 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.803 3.801 3.798 3.798 3.780 3.763 3.748 3.728	Depth In (m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.151 0.145 0.153 0.153 0.153 0.151 0.148 0.143 0.130 0.113 0.098 0.078	(1/s) (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 18.7 18.4 17.6 15.9 13.6 11.7 8.9	O K O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K O K O K O K O K O K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 180 min Summer 240 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.803 3.798 3.798 3.798 3.793 3.780 3.763 3.748 3.728 3.714	Depth In (m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.153 0.153 0.153 0.153 0.148 0.143 0.130 0.113 0.098 0.078 0.064	(1/s) (1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 19.0 18.7 18.4 17.6 15.9 13.6 11.7 8.9 7.1	O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K O K O K O K O K O K				
15 min Summer 30 min Summer 60 min Summer 120 min Summer 120 min Summer 240 min Summer 360 min Summer 360 min Summer 480 min Summer 720 min Summer 960 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer 5760 min Summer	(m) 3.729 3.754 3.777 3.795 3.801 3.803 3.803 3.803 3.803 3.803 3.798 3.798 3.798 3.793 3.780 3.763 3.748 3.728 3.714 3.705	(m) 0.079 0.104 0.127 0.145 0.151 0.153 0.153 0.153 0.153 0.151 0.148 0.143 0.130 0.113 0.098 0.078 0.064 0.055	(1/s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Control E (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Coutflow (1/s) 0.5 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Volume (m ³) 9.1 12.4 15.5 18.0 18.8 18.9 19.0 18.9 19.0 18.9 19.0 18.7 18.4 17.6 15.9 13.6 11.7 8.9 7.1 5.8	O K O K O K O K Flood Risk Flood Risk Flood Risk Flood Risk Flood Risk O K O K O K O K O K O K O K O K O K O K				

		Storm Event		Rain (mm/hr)	Flooded Volume	Discharge Volume	Time-Peak (mins)
					(m³)	(m³)	
	15	min	Summer	138.874	0.0	9.5	26
	30	min	Summer	90.946	0.0	13.1	40
	60	min	Summer	56.713	0.0	16.8	68
1:	20	min	Summer	34.162	0.0	20.7	124
1	80	min	Summer	25.057	0.0	23.0	182
2	40	min	Summer	19.992	0.0	24.5	218
3	60	min	Summer	14.500	0.0	26.8	278
4	80	min	Summer	11.545	0.0	28.5	342
6	00	min	Summer	9.667	0.0	29.8	410
7:	20	min	Summer	8.358	0.0	30.9	478
9	60	min	Summer	6.638	0.0	32.7	616
14	40	min	Summer	4.791	0.0	35.2	884
21	60	min	Summer	3.452	0.0	37.7	1276
28	80	min	Summer	2.733	0.0	39.4	1648
43	20	min	Summer	1.964	0.0	41.5	2380
57	60	min	Summer	1.552	0.0	42.7	3112
72	00	min Summer		1.292	0.0	43.4	3816
				1000 00			
			C	NT 785-50	ı∠u inna	ovyze	

EAS Transport Planning		Page 2
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-07 PP-06	Micro
Date 11/03/2022 14:51	Designed by JPS	Desinario
File SY-07 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for PP-06 md.SRCX

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
8640	min S	Summer	3.698	0.048	0.0	0.3	0.3	4.9	ОК
10080	min S	Summer	3.693	0.043	0.0	0.3	0.3	4.3	0 K
15	min V	Winter	3.739	0.089	0.0	0.5	0.5	10.5	0 K
30	min V	Winter	3.767	0.117	0.0	0.6	0.6	14.2	O K
60	min V	Winter	3.793	0.143	0.0	0.7	0.7	17.7	O K
120	min 🛛	Winter	3.815	0.165	0.0	0.7	0.7	20.6	Flood Risk
180	min 🛛	Winter	3.822	0.172	0.0	0.7	0.7	21.6	Flood Risk
240	min 🛛	Winter	3.824	0.174	0.0	0.7	0.7	21.8	Flood Risk
360	min V	Winter	3.823	0.173	0.0	0.7	0.7	21.6	Flood Risk
480	min V	Winter	3.821	0.171	0.0	0.7	0.7	21.4	Flood Risk
600	min V	Winter	3.817	0.167	0.0	0.7	0.7	20.9	Flood Risk
720	min V	Winter	3.813	0.163	0.0	0.7	0.7	20.3	Flood Risk
960	min V	Winter	3.804	0.154	0.0	0.7	0.7	19.1	Flood Risk
1440	min V	Winter	3.785	0.135	0.0	0.7	0.7	16.5	O K
2160	min V	Winter	3.760	0.110	0.0	0.6	0.6	13.3	ОК
2880	min V	Winter	3.742	0.092	0.0	0.5	0.5	10.8	ОК
4320	min V	Winter	3.717	0.067	0.0	0.4	0.4	7.5	ОК
5760	min V	Winter	3.702	0.052	0.0	0.4	0.4	5.5	ОК
7200	min V	Winter	3.693	0.043	0.0	0.3	0.3	4.3	ОК
8640	min V	Winter	3.689	0.039	0.0	0.3	0.3	3.7	ОК
10080	min V	Winter	3.686	0.036	0.0	0.2	0.2	3.3	O K

	Storm			Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
8640	min	Summer	1.112	0.0	43.8	4504	
10080	min	Summer	0.980	0.0	44.0	5240	
15	min	Winter	138.874	0.0	10.9	26	
30	min	Winter	90.946	0.0	14.9	39	
60	min	Winter	56.713	0.0	19.1	66	
120	min	Winter	34.162	0.0	23.5	122	
180	min	Winter	25.057	0.0	26.0	178	
240	min	Winter	19.992	0.0	27.8	232	
360	min	Winter	14.500	0.0	30.3	290	
480	min	Winter	11.545	0.0	32.2	366	
600	min	Winter	9.667	0.0	33.7	442	
720	min	Winter	8.358	0.0	35.0	518	
960	min	Winter	6.638	0.0	37.0	664	
1440	min	Winter	4.791	0.0	39.9	944	
2160	min	Winter	3.452	0.0	42.8	1344	
2880	min	Winter	2.733	0.0	44.7	1728	
4320	min	Winter	1.964	0.0	47.3	2464	
5760	min	Winter	1.552	0.0	48.8	3168	
7200	min	Winter	1.292	0.0	49.8	3816	
8640	min	Winter	1.112	0.0	50.4	4504	
10080	min	Winter	0.980	0.0	50.8	5216	
			1982-20	20 Inno			

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	lin100yr+40%CC	
Hertfordshire, SG12 8HG	SY-07 PP-06	Micro
Date 11/03/2022 14:51	Designed by JPS	Desinado
File SY-07 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Model Details for PP-06 md.SRCX

Storage is Online Cover Level (m) 4.100

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	20.0
Membrane Percolation (mm/hr)	1000	Length (m)	22.3
Max Percolation (l/s)	123.9	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	3.650	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 3.650

EAS Transport Planning		Page 1
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-07	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 14:52	Designed by JPS	Desinario
File SY-07 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for SY-07 md.SRCX

Upstream Outflow To Overflow To Structures

PP-05 md.SRCX (None) (None) PP-06 md.SRCX

Half Drain Time : 54 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	3.026	0.846	0.0	110.9	110.9	421.4	ОК
30	min	Summer	3.235	1.055	0.0	111.7	111.7	525.4	ОК
60	min	Summer	3.341	1.161	0.0	116.9	116.9	578.0	ОК
120	min	Summer	3.334	1.154	0.0	116.5	116.5	574.7	ОК
180	min	Summer	3.263	1.083	0.0	113.0	113.0	539.1	ΟK
240	min	Summer	3.176	0.996	0.0	110.9	110.9	496.2	ΟK
360	min	Summer	3.004	0.824	0.0	110.9	110.9	410.5	ΟK
480	min	Summer	2.844	0.664	0.0	110.9	110.9	330.6	O K
600	min	Summer	2.737	0.557	0.0	110.3	110.3	277.2	O K
720	min	Summer	2.670	0.490	0.0	104.7	104.7	243.8	ΟK
960	min	Summer	2.585	0.405	0.0	92.5	92.5	201.7	O K
1440	min	Summer	2.502	0.322	0.0	72.2	72.2	160.4	O K
2160	min	Summer	2.442	0.262	0.0	54.2	54.2	130.7	O K
2880	min	Summer	2.409	0.229	0.0	43.9	43.9	113.9	O K
4320	min	Summer	2.370	0.190	0.0	32.1	32.1	94.4	O K
5760	min	Summer	2.347	0.167	0.0	25.6	25.6	83.0	O K
7200	min	Summer	2.331	0.151	0.0	21.5	21.5	75.2	O K

	Storm		Storm Rain Fl		Flooded	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)			
		_						
15	min	Summer	138.874	0.0	528.6	22		
30	min	Summer	90.946	0.0	694.8	33		
60	min	Summer	56.713	0.0	871.7	54		
120	min	Summer	34.162	0.0	1051.5	86		
180	min	Summer	25.057	0.0	1157.4	120		
240	min	Summer	19.992	0.0	1231.6	154		
360	min	Summer	14.500	0.0	1340.2	220		
480	min	Summer	11.545	0.0	1422.9	278		
600	min	Summer	9.667	0.0	1489.3	332		
720	min	Summer	8.358	0.0	1545.2	390		
960	min	Summer	6.638	0.0	1636.1	508		
1440	min	Summer	4.791	0.0	1770.2	744		
2160	min	Summer	3.452	0.0	1915.5	1108		
2880	min	Summer	2.733	0.0	2020.8	1472		
4320	min	Summer	1.964	0.0	2174.7	2204		
5760	min	Summer	1.552	0.0	2291.2	2936		
7200	min	Summer	1.292	0.0	2381.9	3672		
		C	1982-20	20 Inno	ovyze			

EAS Transport Planning		Page 2
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-07	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 14:52	Designed by JPS	Desinario
File SY-07 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Cascade Summary of Results for SY-07 md.SRCX

	Storm Event		Max Level	Max Depth	Max Infiltrati	on	Max	2	Max Outflow	Max	Status
	20010		(m)	(m)	(1/s)	0	(1/s)	-	(1/s)	(m ³)	
8640	min S	Summer	2.319	0.139	0	.0	18.5		18.5	69.5	ОК
10080	min S	Summer	2.311	0.131	0	.0	16.4		16.4	65.0	ОК
15	min W	linter	3.140	0.960	0	.0	110.9		110.9	477.9	ОК
30	min W	linter	3.376	1.196	0	.0	118.6		118.6	595.8	ОК
60	min W	linter	3.494	1.314	0	.0	124.2		124.2	654.3	ОК
120	min W	linter	3.457	1.277	0	.0	122.5		122.5	635.8	ΟK
180	min W	linter	3.344	1.164	0	.0	117.0		117.0	579.4	ΟK
240	min W	linter	3.213	1.033	0	.0	110.9		110.9	514.7	ΟK
360	min W	linter	2.948	0.768	0	.0	110.9		110.9	382.2	ΟK
480	min W	linter	2.738	0.558	0	.0	110.3		110.3	277.6	ΟK
600	min W	linter	2.639	0.459	0	.0	101.1		101.1	228.4	O K
720	min W	linter	2.580	0.400	0	.0	91.5		91.5	199.0	O K
960	min W	linter	2.513	0.333	0	.0	75.2		75.2	165.8	O K
1440	min W	linter	2.447	0.267	0	.0	55.6		55.6	132.7	O K
2160	min W	linter	2.398	0.218	0	.0	40.6		40.6	108.6	O K
2880	min W	linter	2.371	0.191	0	.0	32.4		32.4	95.0	ΟK
4320	min W	linter	2.339	0.159	0	.0	23.6		23.6	79.2	O K
5760	min W	linter	2.320	0.140	0	.0	18.7		18.7	69.8	O K
7200	min W	linter	2.307	0.127	0	.0	15.6		15.6	63.4	O K
8640	min W	linter	2.298	0.118	0	.0	13.5		13.5	58.6	O K
10080	min W	linter	2.290	0.110	0	.0	11.9		11.9	54.9	O K

St	orm	Rain	Flooded	Discharge	Time-Peak	
Ev	rent	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
8640 m	in Summer	1.112	0.0	2457.2	4400	
10080 m	in Summer	0.980	0.0	2520.8	5136	
15 m	in Winter	138.874	0.0	593.0	23	
30 m	in Winter	90.946	0.0	779.1	34	
60 m	in Winter	56.713	0.0	977.2	56	
120 m	in Winter	34.162	0.0	1178.5	94	
180 m	in Winter	25.057	0.0	1297.2	130	
240 m	in Winter	19.992	0.0	1380.3	166	
360 m	in Winter	14.500	0.0	1502.0	232	
480 m	in Winter	11.545	0.0	1594.7	282	
600 m	in Winter	9.667	0.0	1669.1	338	
720 m	in Winter	8.358	0.0	1731.7	394	
960 m.	in Winter	6.638	0.0	1833.6	510	
1440 m	in Winter	4.791	0.0	1983.9	750	
2160 m	in Winter	3.452	0.0	2146.8	1108	
2880 m	in Winter	2.733	0.0	2265.1	1472	
4320 m	in Winter	1.964	0.0	2438.1	2200	
5760 m	in Winter	1.552	0.0	2568.7	2936	
7200 m	in Winter	1.292	0.0	2670.8	3672	
8640 m	in Winter	1.112	0.0	2755.7	4408	
10080 m	in Winter	0.980	0.0	2827.8	5136	
	C	1982-20	20 Inno	vyze		

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-07	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 14:52	Designed by JPS	Desinario
File SY-07 Cascade.casx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	•

Cascade Model Details for SY-07 md.SRCX

Storage is Online Cover Level (m) 4.100

Cellular Storage Structure

Invert Level (m) 2.180 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	524.2	0.0	1.321	0.0	0.0
1.320	524.2	0.0			

Hydro-Brake® Outflow Control

Design Head (m) 1.320 Hydro-Brake® Type Mdl Invert Level (m) 2.180 Design Flow (l/s) 125.0 Diameter (mm) 312 $\,$

Depth (m)	Flow (l/s)						
0.100	9.8	1.200	118.8	3.000	187.7	7.000	286.7
0.200	35.1	1.400	128.2	3.500	202.7	7.500	296.8
0.300	65.7	1.600	137.1	4.000	216.7	8.000	306.5
0.400	91.5	1.800	145.4	4.500	229.9	8.500	315.9
0.500	105.8	2.000	153.3	5.000	242.3	9.000	325.1
0.600	110.8	2.200	160.7	5.500	254.1	9.500	334.0
0.800	103.5	2.400	167.9	6.000	265.4		
1.000	109.1	2.600	174.7	6.500	276.3		

EAS Transport Planning							Page 1
Unit 23, The Maltings	Unit 23, The Maltings Anglia Square						
Stanstead Abbotts SY-08							
Hertfordshire SG12 8HG lin100vr+40%CC							
						MICrO	
Date 11/03/2022 13:22		Desi	gned by	7 JPS			Drainage
File SY-08.srcx		Chec	ked by				brainage
Innovyze		Sour	ce Cont	rol 2020	0.1.3		
Summary of	Results f	For 10	0 year	Return 1	Period	(+40%))
			4				_
	Half Dr	ain Ti	me : 58	minutes.			
Storm	Max Max	Ма	x	Max	Max	Max	Status
Event L	evel Depth	Infilt	ration C	ontrol Σ	Outflow	Volume	
	(m) (m)	(1/	's)	(l/s)	(l/s)	(m³)	
15 min Summer 2	.326 0.846		0.0	18.3	18.3	77.2	OK
30 min Summer 2	.533 1.053		0.0	18.7	18./	96.1	OK
60 min Summer 2	.628 1.148		0.0	19.5	19.5	104.7	ОК
120 min Summer 2	.603 1.123		0.0	19.3	19.3	102.4	ОК
180 min Summer 2	.527 1.047		0.0	18.7	18.7	95.5	O K
240 min Summer 2	.442 0.962		0.0	18.3	18.3	87.8	O K
360 min Summer 2	.284 0.804		0.0	18.3	18.3	73.3	O K
480 min Summer 2	.138 0.658		0.0	18.3	18.3	60.0	O K
600 min Summer 1	.986 0.506		0.0	18.3	18.3	46.2	O K
720 min Summer 1	.849 0.369		0.0	18.3	18.3	33.7	ОК
960 min Summer 1	748 0 268		0 0	17 4	17 4	24 5	0 K
1440 min Summor 1	695 0 205		0.0	12 5	12 5	10 7	0 K
1440 min Summer 1	.005 0.205		0.0	13.3	13.3	10./	O K
2160 min Summer 1	.646 0.166		0.0	9.9	9.9	15.2	O K
2880 min Summer 1	.625 0.145		0.0	7.9	7.9	13.3	OK
4320 min Summer 1	.602 0.122		0.0	5.7	5.7	11.1	ОК
5760 min Summer 1	.588 0.108		0.0	4.5	4.5	9.8	0 K
7200 min Summer 1	.578 0.098		0.0	3.8	3.8	9.0	O K
8640 min Summer 1	.572 0.092		0.0	3.3	3.3	8.3	O K
10080 min Summer 1	.566 0.086		0.0	2.9	2.9	7.8	O K
15 min Winter 2	.440 0.960		0.0	18.3	18.3	87.5	O K
St	orm	Rain	Flooded	Discharge	e Time-P	eak	
Ev	rent (n	mm/hr)	Volume	Volume	(mins	5)	
			(m³)	(m³)			
				~ ~ ~	_		
15 m.	in Summer 13	38.874	0.0	92.5	0	23	
30 m.	in Summer 9	90.946	0.0	121.3	3	34	
60 m.	in Summer 5	56.713	0.0	151.5	5	54	
120 m	in Summer 3	34.162	0.0	182.6	5	88	
180 m.	in Summer 2	25.057	0.0	201.0)	122	
240 m.	in Summer 1	19.992	0.0	213.8	3	156	
360 m	in Summer 1	14.500	0.0	232.0	5	224	
480 m	in Summer 1	11.545	0.0	247.0)	290	
600 m	in Summer	9.667	0.0	258	5	350	
720 m	in Summer	8.358	0 0	268 2	2	396	
960 m	in Summer	6.638	0.0	284 0)	502	
1440	in Summor	A 701	0.0	201.0	1	740	
1440 m		7.171 2 150	0.0	207.4	1	104	
2160 m	in Summer	3.452	0.0	332.5		104	
2880 mi	in Summer	2.133	0.0	351.0		400	
4320 m	in Summer	1.964	0.0	3/8.2	2	200	
5760 mi	ın Summer	1.552	0.0	398.8	3 2	936	
7200 m.	in Summer	1.292	0.0	415.0) 3	672	
8640 m.	in Summer	1.112	0.0	428.6	5 4	384	
10080 m:	in Summer	0.980	0.0	440.3	3 5	104	
15 m	in Winter 13	38.874	0.0	103.0	5	23	

©1982-2020 Innovyze

EAS Transport Planning	Page 2	
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-08	
Hertfordshire, SG12 8HG	1in100vr+40%CC	Micro
Date 11/03/2022 13:22	Designed by JPS	
File SV-08 srcv	Checked by	Drainage
	Source Control 2020 1 3	
111100 y 2 e	Source control 2020.1.5	
Summary of Results fo	or 100 year Return Period (+40%)	
		_
Storm Max Max	Max Max Max Max	Status
Event Level Depth I	Infiltration Control Σ Outflow Volume	
(m) (m)	$(1/s)$ $(1/s)$ $(1/s)$ (m^3)	
30 min Winter 2 675 1 195	0 0 19 9 19 9 10 8 9	O K
60 min Winter 2.789 1.309	0.0 20.9 20.9 119.4	O K
120 min Winter 2.743 1.263	0.0 20.5 20.5 115.2	O K
180 min Winter 2.630 1.150	0.0 19.6 19.6 104.8	0 K
240 min Winter 2.504 1.024	0.0 18.5 18.5 93.4	O K
360 min Winter 2.267 0.787	0.0 18.3 18.3 71.8	O K
480 min Winter 2.018 0.538	0.0 18.3 18.3 49.1	O K
600 min Winter 1.796 0.316	0.0 18.3 18.3 28.8	OK
720 min Winter 1.736 0.256	0.0 16.9 16.9 23.4	OK
960 min Winter 1.689 0.209		OK
2160 min Winter 1 618 0 138	0.0 7.3 7.3 12.6	OK
2880 min Winter 1.602 0.122	0.0 5.7 5.7 11.1	O K
4320 min Winter 1.583 0.103	0.0 4.2 4.2 9.4	0 K
5760 min Winter 1.572 0.092	0.0 3.3 3.3 8.4	ΟK
7200 min Winter 1.564 0.084	0.0 2.7 2.7 7.7	O K
8640 min Winter 1.558 0.078	0.0 2.3 2.3 7.1	O K
10080 min Winter 1.554 0.074	0.0 2.1 2.1 6.7	ОК
Storm F	ain Flooded Discharge Time-Peak	
Event (m	m/hr) Volume Volume (mins)	
	(m ³) (m ³)	
30 min Winter 9	0.946 0.0 135.9 34	
60 min Winter 5	0./13 U.U 169.8 58	
120 min Winter 3 180 min Winter 2	4.102 0.0 204.6 94 5.057 0.0 225.1 132	
240 min Winter 1	9.992 0.0 239.5 168	
360 min Winter 1	4.500 0.0 260.6 240	
480 min Winter 1	1.545 0.0 276.6 306	
600 min Winter	9.667 0.0 289.5 336	
720 min Winter	8.358 0.0 300.4 386	
960 min Winter	6.638 0.0 318.1 500	
1440 min Winter	4.791 0.0 344.4 740	
2160 min Winter	3.452 0.0 372.4 1104	
2880 min Winter	2.733 U.U 393.2 1472	
4320 MIN WINTER 5760 min Winter	1.504 0.0 423.0 2200 1.552 0.0 446.7 2856	
7200 min Winter	1.292 0.0 464.9 3680	
8640 min Winter	1.112 0.0 480.1 4400	
10080 min Winter	0.980 0.0 493.2 5136	

©1982-2020 Innovyze

EAS Transport Planning		Page 3
Unit 23, The Maltings	Anglia Square	
Stanstead Abbotts	SY-08	
Hertfordshire, SG12 8HG	lin100yr+40%CC	Micro
Date 11/03/2022 13:22	Designed by JPS	Desinario
File SY-08.srcx	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 3.600

Cellular Storage Structure

Invert Level (m) 1.480 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	96.0	0.0	1.321	0.0	0.0
1.320	96.0	0.0			

Hydro-Brake® Outflow Control

Design Head (m) 1.320 Hydro-Brake® Type Md4 Invert Level (m) 1.480 Design Flow (l/s) 21.0 Diameter (mm) 153

Depth (m) Flow (1/s)	Depth (m) Flow	(1/s) Depth (m) H	Flow (l/s)	Depth (m) Flo	w (l/s)
0.100 3.9	1.200	20.0 3.000	31.6	7.000	48.3
0.200 13.0	1.400	21.6 3.500	34.1	7.500	50.0
0.300 18.1	1.600	23.1 4.000	36.5	8.000	51.6
0.400 17.1	1.800	24.5 4.500	38.7	8.500	53.2
0.500 15.4	2.000	25.8 5.000	40.8	9.000	54.7
0.600 15.1	2.200	27.1 5.500	42.8	9.500	56.2
0.800 16.4	2.400	28.3 6.000	44.7		
1.000 18.3	2.600	29.4 6.500	46.5		

Appendix K – Surface Water Drainage Layout

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK TOPOGRAPHICAL SURVEYS Unit 23 The Maltings Stanstead Abbotts Hertfordshire SG12 8HG Tel 01920 871 777 e: contact@eastp.co.uk www.eastp.co.uk

Appendix L – Anglian Water Diversion Information

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK TOPOGRAPHICAL SURVEYS Unit 23 The Maltings Stanstead Abbotts Hertfordshire SG12 8HG Tel 01920 871 777 e: contact@eastp.co.uk www.eastp.co.uk

Louisa Wade

From:	Fewell Darren A <dfewell@anglianwater.co.uk></dfewell@anglianwater.co.uk>
Sent:	17 May 2017 17:18
То:	Louisa Wade
Cc:	Doneghan Grace
Subject:	Proposed Retail Development - Anglia Square Norwich - Development in Close
	Proximity to Anglian Water Public Sewer Apparatus

Hi Louisa,

Proposed Retail Development – Anglia Square Norwich – Development in Proximity to Anglian Water Public Sewer Apparatus

Further to our detailed phone discussion this afternoon, regarding your overall scope of development proposed at the above site, I am (as requested) just dropping you a line to briefly clarify the main points of our discussion.

I trust this helps with the planning and early design stages Louisa, but if you need anything else then please come back to us and we will do our best to assist you.

- Any re-development areas falling within 3m of the existing public sewer apparatus, but remaining only 'built near' the public sewers, and maintaining a similar level of clearance and access to that already enjoyed, would in principle be acceptable to us, subject to your clients satisfying themselves that the new foundation designs for the affected new buildings were specifically designed to avoid transferring loading onto the adjacent public sewer apparatus.
- Any areas falling within 3 metres would simply need to comply with usual Part H4 Building Regulations requirements in respect of 'Building Near' public sewer apparatus, and Anglian Water has published self-approval criteria on our website, but the principles of proceeding as outlined in my guidance above would in principle be satisfactory.
- So the designers for the new foundations would need to site survey the affected public sewers to make sure that when considering the relative invert depth of that affected sewer, and the clearance provided to the building structure, that no loading would be transferred on a 45 degree 'angle of repose' design principle.
- Based on drawing A03-P2-052 rev F 'Ground Floor Retail Plan', the only area that would appear to require direct *consideration* of formal diversion of our apparatus would be the existing 675mm dia SW public sewer, and the existing 225mm dia Foul public sewer that runs immediately south of unit A1.01 (675mm SWS Section close to SW MH's 0453 through to 0456 approx & 225mm FWS Section close to Foul MH's 0405 through to 0408).
- We discussed the principle of it being diverted clear of the retail units footprint but being designed to fall *centrally* within the remaining pedestrian access/walkway areas so that clearance is maximised on either side of the sewers to the buildings.
- This section of drainage could therefore be considered for diversion clear of the footprint of the new retail units, subject to full planning approval, and the correct application being made to Anglian Water under Section 185 of the Water Industry Act 1991, where upon the design would be considered on its individual design merits at that time, but I can confirm that the principle of us being prepared to consider such a diversion to keep the apparatus clear of the building footprint is established.
- The development around retail unit G1.03 would appear to suggest that it may result in a direct build over of our existing foul and surface water manholes/sewers that currently appear to run clear of the existing retail footprint.
- Anglian Water could consider formally devesting the affected sections of public sewer into your clients
 own private ownership under a Section 116 devesting notice, but they would need to apply to us as the
 'owners' of the affected premises served by that drainage, and formally request it is devested into their
 own private ownership, and they would also need to demonstrate to us that there were no affected 3rd
 parties connected to the section of public sewer in question, that would otherwise be adversely affected
 by any proposal to remove (or make redundant) said affected section of public sewer, and they would
 need to show that the public sewer and its existing connections were *only serving* their own existing retail
 premises, and this would be done by detailed site survey of the existing drainage with follow up drainage
 drawings provided, and provision of a CCTV survey with all existing sewer connections identified to us in
 terms of what they serve and who owns those connections.
- Once a formal devesting was applied for, and we successfully reached a stage whereby we had approved the proposals, and had issued notice under Section 116, then at that point your clients could physically remove the offending sections of apparatus from the ground in order to allow the new building to be constructed without hindrance.

• The existing foul and surface water sewers shown as passing across your 'residential refuse' and 'retail refuse' areas between the Iceland store and retail unit G1.01, which link back towards Anglia Square, are mapped and recorded as '*private'* sewer apparatus and thus are still considered private apparatus accordingly, and Anglian Water would not have any further comment to make regarding any impact the development may have on that section of drainage as the apparatus is not considered to be Anglian Water owned, but any future development, and foundation design arrangements would obviously just need to take any reasonable design allowances and standard construction precautions to prevent risk of damage occurring.

I trust this summarises things but let us know if you need anything else,

Regards Darren Fewell Drainage Engineer Anglian Water Services Ltd

The information contained in this message is likely to be confidential and may be legally privileged. The dissemination, distribution, copying or disclosure of this message, or its contents, is strictly prohibited unless authorised by Anglian Water. It is intended only for the person named as addressee. Anglian Water cannot accept any responsibility for the accuracy or completeness of this message, and does not authorise any contract to be made using the Internet. If you have received this message in error, please immediately return it to the sender at the above address and delete it from your computer. Anglian Water Services Limited Registered Office: Lancaster House, Lancaster Way, Ermine Business Park, Huntingdon, Cambridgeshire, PE29 6XU Registered in England No 2366656 Please consider the environment before printing this email. Appendix M – Anglian Water Foul Water Capacity Check

Surface Water Drainage Strategy Anglia Square Regeneration, Norwich, Norfolk

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK TOPOGRAPHICAL SURVEYS Unit 23 The Maltings Stanstead Abbotts Hertfordshire SG12 8HG Tel 01920 871 777 e: contact@eastp.co.uk www.eastp.co.uk

Drainage Impact Assessment

Project Title:

Norwich, St. Crispins Road (Anglia Square)

Anglian Water Services contact:

Rob Morris Pre-development Senior Engineer Thorpe Wood House Thorpe Wood Peterborough PE3 6WT Mobile Number: 07702341018 Our reference number: S-10450/20492 8 June 2017

1. Summary

This report has been undertaken in response to an enquiry from EAS to determine the impact of flows from the site at St. Crispins Road (Anglia Square), Norwich on the performance of the existing foul sewer network and develop a feasible foul drainage solution. It should be read in conjunction with the pre-planning report dated 30 March 2017, which indicated that a direct connection to the public foul sewer system is likely to have a detrimental effect on the existing sewerage network.

The analysis has been performed on the foul system only. There has been no consideration of the surface water flows as this is not within the scope of the study.

The additional foul flows from the development site comprising 1500 C3 dwellings and three commercial development (7,365m2 – A1 Shops, 5,924 m2 - A3 Restaurant & Café and 3,556 m2 - D2 Assembly & Leisure) were modelled connecting to three manholes reference no. TG22098203 (NGR: TG 22889 09284), TG22099208 (TG 22967 09283) and TG23091211 (TG 23153 09285) located at St. Crispins Road.

The study concludes that the development will not cause detriment to the capacity of the sewer system and will not result in increased flood risk.

The topography of the site indicates that a gravity regime is feasible. Due to the proximity of the site boundary to the connection points it is assumed that the developer will provide the necessary infrastructure to convey flows from the site to the network connection point.

2. Hydraulic Modelling and Solutions

The proposed development site is located off St Crispins Road on in the city centre of Norwich (see **Error! Reference source not found.** 1. Foul flows from the site drain to Whitlingham Trowse Recycling Centre (WRC) located to the north of the town. The proposed development comprises of 1500 dwellings plus three other commercial development sites.

To enable the analysis to be performed the existing hydraulic model for Whitlingham Trowse was used.

Modelling assumptions can be found in APPENDIX 1.

Figure 1: Showing the location of the development site and the proximity of the WRC

Proposed connection point

The proposed connection points for the development are manholes reference no. TG22098203 (NGR: TG 22889 09284), TG22099208 (TG 22967 09283) and TG23091211 (TG 23153 09285), located at St Crispins Road in the city centre of Norwich of Whitlingham Trowse catchment (see Figure 2 and 2a). The diameter of the sewer to which the proposed development will connect are 300mm (TG22098203) and 225mm (TG22099208, TG23091211) respectively. A review of the site topography indicates that a gravity connection is possible.

Figure 2: Showing the location of the proposed connection point

Figure 2a: Showing the location of the proposed connection point (close-up)
Hydraulic modelling

The hydraulic model was run to determine the existing sewer performance during a 1 in 20 year critical duration storm. The model was then re-run with the estimated flows from the site connecting to manholes TG2288909284, TG2296709283 and TG2315309285 via a gravity connection.

The model does not predict any detriment to the network or overflow performance due to the additional flows from the development.

Mitigation Solution

The study demonstrated that the flows from the development site can be connected to the sewer network system without the need for any improvement.

3. Summary and recommendation

Assumed flows from the site at St Crispins Road, Norwich have been modelled connecting via gravity to the existing foul drainage system to three manholes reference no. TG2288909284, TG2296709283 and TG2315309285. No detriment to the existing performance has been predicted.

APPENDIX 1.- Development details

Propo	sed Connection					
Proposed connection location		St Crispins Road, Norwich				
Connection sewer or node reference (incl. X&Y)		TG22098203(X=622889, Y=309284) TG 22889 09284 TG22099208(X=622967, Y=309283) TG 22967 09283				
		TG23091211(X=623153, Y=309285) TG 23153 09285 300mm (TG22098203)				
Connection sewer diameter		225mm (TG2209208) 225mm (TG2209208)				
Connection relative to the development		South				
Discharge regime		Gravity				
Pump discharge rate		N/A				
Creep& Storage						
Total cre	ep (5 m ² per property)	7500				
Total development storage (m ³)		907.32				
Pump storage volume, m ³		N/A				
Highest Point of development (mAOD)		6.0m (TG22098203), 6.9m (TG22099208), 4.0m (TG23091211)				
Lowest Point of development (mAOD)		4.7m (TG22098203),4.6m (TG22099208) 3.4m (TG23091211)				
DWF	Calculations					
	Attribute	Value	Totals	Unit / Calculation		
	Development size	5.22		Ha (Digitised Sub-catchment area)		
	Residential					
А	Residential dwellings	1500		No.		
В	Residential occupancy	2.35		No.		
С	Residential population (P)	3525		No. (A x B)		
D	Residential PCC (G)	125		l/h/d		
E _(avg)	Residential demand - Average		5.10	I/s (C x D)/86400		
E(neak)	Residential demand - Peak		10.81	1/s (E ₍₂₎₍₀₎ x 2.12)		
(pour)				··· ((avg) /		
F	Infiltration		1.27	$1/s (0.25 \times E_{(a)(q)})$		
	Industrial/ Trade *					
G	Industrial/trade_area	1.68		На		
Н	Industrial/trade discharge per ha	0.34		l/s (average)		
1	Industrial/trade domestic element per ha	0		//s		
	Commercial/trade - Average	•	0.58	I/s (GxH+GxL)		
	Commercial/trade- Peak		1 74	$\frac{1}{S}(1/s_{1})$		
C (peak)				(o(avg) X O)		
	Schools					
К	School PCC	0		l/h/d		
L	School occupancy	0		No.		
M _(avg)	School demand - Average		0	I/s (K x L)/86400		
M _(peak)	School demand - Peak		0	I/s (M _(avg) x 3)		
	Other					
N _(avg)	Other demand - Average		0	l/s		
N _(peak)	Other demand - Peak		0	l/s		
O _(avg)	Total Discharge - Average		5.68	$\frac{I/S \left(E_{(avg)} + J_{(avg)} + M_{(avg)} + N_{(avg)}\right)}{I/S \left(E_{(avg)} + M_{(avg)} + M_{(avg)}\right)}$		
O _(peak)	Total Discharge - Peak		12.55	$I/s (E_{(peak)} + J_{(peak)} + M_{(peak)} + N_{(peak)})$		
	DWF Total - Average		6 9 5	$1/s(O_{(aug)} + F)$		
	DWE Total - Beak		13.92	1/s(O(avg) + F)		
			13.02	1/ 3((peak) + 1)		

Breakdown of commercial flow rates

Development Description	Industry Type	Area (ha)	Discharge Allowance per Ha (average) I/ s/ ha	Commercial Flow (average daily) I/ s
Restaurants & Cafes	A3	0.59	0.4	0.24
Assembly and Leisure	D2	0.36	0.4	0.20
Retail space	A1	0.27	0.2	0.054
Retail space	A1	0.46	0.2	0.093
TOTAL		1.68		0.58

APPENDIX 2.- Embodied carbon and water footprinting

Carbon footprint

In 2006 Anglian Water recognised the impacts of changing climate as one of the most significant challenges facing the organisation. In response we have developed and implemented a strategy of measure, manage and reduce our carbon emissions. We have set ourselves goals to halve our overall greenhouse emissions by 2035 (from 2010 levels) and to halve the embodied carbon in all new assets we build in 2015, compared to those that were built in 2010.

Water footprinting

Water is our most precious resource and at present we do not fully understand how sustainable each litre of water we supply to our customers is over our full supply chain. In response, we are implementing a strategy of 'water footprinting'.

Primarily water footprinting assesses the impact of human activity on the water environment. The process measures the volumes and scarcity of freshwater consumption including geographical and temporal components in producing a product or service. This is followed by an assessment defining actions required to achieve sustainable and equitable water use especially in water scarcity 'hot spots'.