

Energy Statement

Deal Ground & May Gurney, Bracondale, Norwich NR1 2EG

Reserved matters application proposal for Serruys Property Co Ltd

June, 2023

Contents

Document Control	.2
Executive Summary	.2
Introduction	4
The applicant	4
Site description Proposed development	4 4
Planning policy, legislation & technical guidance	6
Relevant planning policies	6
Relevant legislation	7
Energy assessment	9
Energy Assessment	9
Building Regulations Approved Document L	9
Energy Modelling	9
Baseline Carbon Emissions	10
Energy Hierarchy	10
Reduce energy demand	11
Use energy efficiently	.13
Overheating & Cooling assessment	.15
Non-regulated energy use	.15
Heating infrastructure	.16
Renewable energy	.16

18
20
21
22
23
24
25
26

1

Document Control

PREPARED BY:	PANOS DALAPAS		
	Associate Director		
	ESG CONSULTANCY - ENERGY CONSULTANCY		
	FOR AND ON BEHALF OF CBRE LTD.		
Approved By:	NAZLI DABIDIAN		
	Director		
	ESG CONSULTANCY - ENERGY CONSULTANCY		
	FOR AND ON BEHALF OF CBRE LTD.		
Date of Issue:	16 th June 2023	Version:	02
Document Reference:	Deal Ground_Energy Statement_v02	Status:	Final

Executive Summary

This Energy Statement has been prepared on behalf of Serruys Property Co Ltd ('the Applicant') in support of a reserved matters planning application for a mixed development consisting of a maximum of 670 dwellings. The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority.

The proposal seeks the approval of the reserved matters for the approval of siting, layout, appearance and landscaping for 670 dwellings pursuant to outline planning application (full details of access) for a mixed development consisting of a maximum of 670 dwellings; a local centre comprising commercial uses (A1/A2/A3): a restaurant/dining quarter and public house (A3/A4); demolition of buildings on the May Gurney site (excluding the former public house); an access bridge over the River Yare; new access road; car parking; flood risk management measures; landscape measures including earthworks to form new swales and other biodiversity enhancements including the re-use of the Grade II Listed brick Kiln for use by bats.

The ESG Consultancy Team of CBRE Limited have been commissioned to develop an energy strategy for the Application Site, including consideration of energy performance targets, in terms of carbon emissions, and inform design development for the proposed scheme design against relevant planning policies, technical guidance and legislation. This Energy Statement outlines the key features and strategies adopted by the development team to enhance the energy performance of the proposed development.

The strategy for reducing energy use and associated carbon emissions through the design of the scheme follows the below Energy Hierarchy, namely:

- Be Lean use less energy and manage demand during operation through fabric and servicing improvements and the incorporation of flexibility measures;
- Be Clean exploit local energy resources (such as secondary heat) and supply energy efficiently by connecting to district heating networks;
- Be Green maximise opportunities for renewable energy by producing, storing and using renewable energy on-site;

The following passive design and energy efficiency features will be implemented in the proposed strategy to reduce heat demand and energy use.

- Building fabric of high thermal performance, exceeding Part L 2021 standards.
- Robust construction details and insulation continuity for minimising thermal bridging and improving air tightness.

2

- External shading, in the form of balconies and deep window reveals, combined with solar control glass is proposed to limit solar gains and tackle the risk of overheating.
- Well insulated pipework for reducing distribution heat losses, thus reducing energy demand further.
- Light fittings of low energy types will be specified throughout the scheme.

An all-electric, fossil fuel free heating strategy, featuring Air Source Heat Pumps (ASHPs), is proposed for the new dwellings, to take advantage of the ongoing grid decarbonisation, thus allowing the development to become net zero carbon in due course. Photovoltaic (PV) panels, installed on roofs are also proposed for generating renewable energy on site.

An Overheating assessment has been carried out for the proposed scheme, against the Part O 2021 overheating criteria, outlining the strategy proposed to reduce the risk of overheating in the proposed dwellings.

The following table demonstrates the overall reduction in regulated carbon emissions that can be achieved for the proposed development, following the energy strategy outlined in this report.

Table 1: Regulated carbon dioxide emissions (site-wide)

	Carbon emissions rate	
	tnCO2 per annum	% Reduction from baseline
Baseline: Part L 2021 of the Building Regulations Compliant Development	693.5	-
Proposed scheme: After energy demand reduction & renewable energy	214.4	69%

The following figure shows the percentage reduction achieved as a result of the Low and Zero Carbon technologies proposed for on-site generation of renewable energy.

Figure 1: Carbon dioxide savings from LZC technologies

Site-wide Part L 2021 carbon Emissions

🖿 Proposed scheme 🛛 💶 Carbon savings 📼 📼 Baseline: Part L 2021 TER

3

Introduction

This Energy Statement has been prepared on behalf of Serruys Property Co Ltd ('the Applicant') in support of a reserved matters planning application for a mixed development consisting of a maximum of 670 dwellings. The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority.

The ESG Consultancy Team of CBRE Limited have been commissioned to develop the energy strategy for the Application Site, including consideration of energy performance targets, in terms of carbon emissions, and informing design development for the proposed scheme design against relevant planning policies, technical guidance and legislation.

This Energy Statement outlines the key features and strategies adopted by the development team to enhance the energy performance of the proposed development.

The applicant

4

Serruys Property Co Ltd (hereafter referred to as 'the Applicant') is seeking reserved matters planning permission for a mixed development consisting of a maximum of 670 dwellings. The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority. The Applicant has appointed the ESG Consultancy Team of CBRE Limited (CBRE) to embed sustainability within the design proposal, working alongside the other CBRE colleagues also working on the scheme, namely planning and EIA.

Site description

The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority. The site lies within a mile of the City Centre and is 1km from Norwich Railway Station.

Proposed development

The proposal seeks the approval of the reserved matters for the approval of siting, layout, appearance and landscaping for 670 dwellings pursuant to outline planning application (full details of access) for a mixed development consisting of a maximum of 670 dwellings; a local centre comprising commercial uses (A1/A2/A3): a restaurant/dining quarter and public house (A3/A4); demolition of buildings on the May Gurney site (excluding the former public house); an access bridge over the River Yare; new access road; car parking; flood risk management measures; landscape measures including earthworks to form new swales and other biodiversity enhancements including the re-use of the Grade II Listed brick Kiln for use by bats.

5

Figure 2: Application Boundary shown in red

Figure 3: illustrative masterplan

Planning policy, legislation & technical guidance

Relevant planning policies

This section summarises the key legislative requirements, and the current and emerging planning policy requirements in the UK and Norwich City Council. It provides the legislative and regulatory planning context against which this Energy Statement appraises the proposed development.

National Policy

6

Energy White Paper, 2020

The Energy White Paper: Powering our net zero future (December 2020) is an energy policy in response to the increasing challenges faced by the UK, including climate change, decreasing domestic supplies of fossil fuel and escalating energy prices. The Energy White Paper puts the net zero carbon emissions target and UK's effort to fight climate change at its core, setting the following priorities:

- Transform the energy sector to cut UK's carbon dioxide emissions the main contributor to global warming;
- Support a green growth of the economy, providing green jobs in new green industries;
- Secure supply and protect the fuel poor.

HM Government National Planning Policy Framework (NPPF), 2021

In respect to sustainability, the document retains its focus for the role that the planning system has to play in meeting the challenges presented by climate change. As stated in Paragraph 152:

"The planning system should support the transition to a low carbon future in a changing climate...It should help to: shape places in ways that contribute to radical reductions in greenhouse gas emissions, minimise vulnerability and improve resilience; encourage the reuse of existing resources, including the conversion of existing buildings; and support renewable and low carbon energy and associated infrastructure."

At Paragraph 154 it continues to state:

"New development should be planned for in ways that:

avoid increased vulnerability to the range of impacts arising from climate change.
 When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and,

 can help to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards."

Regional Policy

Joint Core Strategy for Broadland, Norwich and South Norfolk, 2011

This Joint Core Strategy (JCS), prepared by the three councils of Broadland, Norwich and South Norfolk, working together with Norfolk County Council as the Greater Norwich Development Partnership (GNDP), sets out the long-term vision and objectives for the area, including strategic policies for steering and shaping development. The strategy sets out the policies addressing climate change and promoting sustainability with the aim to:

- locate development in places that will minimise adverse impact on the environment, and ensure it is designed to be energy efficient and capable of being adapted as circumstances change
- use energy and water wisely and secure more energy from renewable sources

Policy 3: Energy and water sets the below targets with regards to energy efficiency:

• aim to minimise reliance on non-renewable high-carbon energy sources and maximise the use of decentralised and renewable or low-carbon energy sources and sustainable construction technologies, providing at least 10% of the scheme's expected energy requirements.

The policies within the JCS relating to environmental performance and sustainable construction are listed under Appendix A of this document.

Local Policy

7

Norwich Local Plan: Development Management Policies plan, 2014

The Norwich Local Plan: Development Management Policies provides detailed planning policies to help deliver the JCS strategic policies, objectives and priorities.

In particular, the DM policies plan includes a range of policies, primarily in Policies DM1 - Achieving and delivering sustainable development, DM3 - Design principles and DM4 - Renewable energy, that respectfully deal with matters relating to sustainable design and construction, energy efficiency and greenhouse gas reduction. Policy DM2 - Amenity relates to future occupiers' health and wellbeing, with particular regard given to high standard of amenity for satisfactory living and working conditions. Future proofing the proposed development against rising temperatures and tackling the risk of overheating falls within this policy requirements.

South Norfolk Local Plan: Development Management Policies document, 2015

The Development Management Policies will determine how the Council carries out its development management responsibilities to promote sustainable development.

Policy DM 3.8 'Design Principles applying to all development' sets high quality standards for new developments in terms of scale, massing, materials etc. Optimum building orientation needs to be considered for developments to benefit from sunlight and passive solar energy.

Policy DM 4.1 Renewable Energy supports maximising use of renewable energy technologies on site for reducing carbon emissions further,

Relevant legislation

HM Government Climate Change Act (2008), Chapter 27, with 2022 amendments

The Act sets out emission reduction targets that the UK must comply with legally. It represents the first global legally binding climate change mitigation target set by a country and, following a 2022 revision, requires the UK to bring all greenhouse gas emissions to at least 100% lower than the 1990 baseline, by 2050.

The "1990 baseline" means the aggregate amount of-

- Net UK emissions of carbon dioxide for that year, and
- Net UK emissions of each of the other targeted greenhouse gases of the year that is the base year for that gas.

8

HM Government Building Regulations Approved Document: L, Conservation of fuel and power, 2021 edition with 2023 amendments

Approved Document Part L (2021, England edition) is the Building Regulation relating to the conservation of fuel and power in buildings. The Approved Document is separated into two sections: Volume 1 and Volume 2. Volume 1 relates to new and existing dwellings and Volume 2 relates to buildings other than dwellings. Part L of the Building Regulations is the mechanism by which government is driving reductions in the regulated CO_2 emissions from new buildings.

Guidance for new buildings is given in Sections 1 to 9 of Part L, Volumes 1 & 2. This should be checked with the Building Control Body (BCB) to confirm that they meet the energy efficiency requirements.

The Amendment Regulations and accompanying Approved Document L have come into force on 15 June 2022. Part L 2021 proposes an interim reduction in carbon emissions, paving the way for greater reductions and supporting wider adoption of heat pumps in 2025. This is backed up from the recent 'Mission Zero' Chris Skidmore Net Zero review detailing the importance of regulation to enable rapid and safe introduction of emerging net zero technologies.

Part L 2021, relating to the conservation of fuel and power in buildings, applies to all components of the proposed development with regards to energy efficiency requirements and carbon emissions.

HM Government Building Regulations Approved Document: O Overheating, 2021 edition

Approved Document Part O (2021, England edition) is the Building Regulation with regards to mitigating the risk of overheating in new residential buildings.

The aim of Part O requirement is to protect the health and welfare of occupants of the building by reducing the occurrence of high indoor temperatures. Compliance with Part O can be demonstrated to building control bodies by using one of the following methods:

- a. The simplified method for limiting solar gains and providing a means of removing excess heat,
- b. The dynamic thermal modelling method.

All dwellings at the Proposed Development will, therefore, be assessed in accordance with the Building Regulations Part O, 2021 edition.

Energy assessment

Background

The Climate Change Act 2008 sets legally binding greenhouse gas emission reduction targets to reduce UK emissions by at least 100% of 1990 levels by 2050 (with interim targets of 37% by 2020, 51% by 2025 and 78% by 2035) and has positioned the UK on a transition pathway to a low-carbon economy.

All regions within the UK must face up to the reality of climate change and the need to limit their future contribution to this major global problem. The effects of the climate emergency are already being felt across the UK both in cities and rural areas. Developments urgently need to build resilience into its proposals and adapt to these changes, whilst also mitigating its own contribution to carbon emissions. In July 2019, Norwich City Council declared a climate emergency and set a target for the borough to reach net zero emissions by 2030.

To support these ambitions and requirements the proposed development identifies measures to contribute to being developed and operated to Net Zero Carbon (NZC) standards.

Energy Assessment

9

This section presents the energy assessment carried out for the proposed development and outlines the energy strategy developed, in line with the Council and Part L requirements. The assessment shows how significant carbon savings can be achieved by integrating energy efficiency measures and using renewable energy technologies on site.

The energy calculations presented in this report will need to be continually updated through the detailed design stages to reflect any changes. The energy analysis presented here should be treated as preliminary information based on the currently available data.

Building Regulations Approved Document L

On 15 June 2022, national building regulations were updated to enhance energy performance standards for new buildings through Approved Document Part L (2021, England edition).

The proposed dwellings will therefore be designed to exceed the requirements of the Approved Document L, Volume 1, in terms of carbon emissions, fabric energy efficiency and primary energy use. The non-domestic elements will be designed to exceed the requirements of the Approved Document L, Volume 2, in terms of carbon emissions and primary energy use.

Energy Modelling

The Standard Assessment Procedure (SAP 10.2) was used to assess the energy performance of the proposed residential units, in terms of regulated energy consumption and energy use for equipment and cooking appliances. The energy assessment of the scheme's non-domestic elements was carried out in line with the National Calculation Methodology (NCM), using IES VE software for Dynamic Simulation Modelling. The SAP 10.2 carbon emission factors have been used in this energy assessment, to consider the ongoing grid decarbonisation.

This energy assessment has been completed by the ESG Consultancy Group's accredited On Construction Domestic Energy Assessors and Low Carbon Energy Assessors. The model geometry was based on the planning drawings (Issue 06.05.2023) received from Stolon Studio Architects.

Appendix D provides SAP 10 worksheets and the BRUKL output document for representative units.

Baseline Carbon Emissions

The Part L Target Emission Rate (TER) has been used to determine the regulated CO_2 emissions baseline. The following tables present the baseline CO_2 emission rate and other Part L energy performance targets, set for the proposed development on the basis of the energy modelling carried out at this stage.

Table 2: Baseline carbon dioxide emissions

Regulated carbon dioxide emissions (tnCO2 per annum)	Domestic elements	Non-Domestic elements
Total Floor Area (sqm)	57,032	1,974
Baseline: Part L 2021 of the Building Regulations Compliant Development	672.2	21.2

Table 3: Part L notional building targets

Energy performance of notional building	Domestic elements	Non-Domestic elements
Target primary energy rate	62.48 kWh _{PE} /m ²	115.11 kWh _{PE} /m ²
Target emission rate	11.8 kgCO ₂ /m ²	10.8 kgCO ₂ /m ²
Target fabric energy efficiency rate	34.7 kWh/m ²	n/a

Energy Hierarchy

The energy strategy proposed for the development follows the below Energy Hierarchy, prioritising demand reduction and energy efficiency measures to low carbon heat provision and renewable energy generation.

Table 4: The Energy Hierarchy

Reduce energy demand

At the first step of the Energy Hierarchy, the energy demand of the scheme should be reduced through passive design measures, such as optimising the buildings' orientation and form, and specifying building fabric of high thermal performance. The proposed energy strategy follows a fabric first approach, thus integrating the following passive design measures.

Building orientation

Orientation varies across the proposed development. In principle, the proposed design aims to provide all residential areas with adequate levels of daylight for enhanced visual comfort and sunlight for passive heating in winter. Glazing areas, in particular on south and west facades that are more sensitive to solar gains and have a higher risk of overheating, have been optimised, to balance heat losses, solar gains and daylighting.

Building form

11

Simplified and compact building forms provide lower surface areas and less thermal junctions, compared to irregular forms. As a result, heat losses either through the envelope surface or element junctions are reduced thus reducing heating demand. The proposed design aims to avoid complex, irregular forms, where possible, to reduce energy demand.

Passive solar design & daylight

The make-up of the proposed façades have been optimised to balance the proportion of glazing to solid wall, thus providing optimum amount of daylight and winter solar heating, while limiting excessive solar gains in summer. External shading in the form of balconies and deep window reveals, combined with high performance glass is proposed throughout the scheme for additional solar control.

An Overheating Assessment has been completed by CBRE Ltd (Appendix B), showing that, as a result of the proposed passive design measures, the risk of

overheating in the assessed dwellings can be reduced considerably in line with Part O 2021.

Building fabric

Building fabric of enhanced thermal properties is proposed for the scheme to reduce heat losses as far as practical and cut energy demand for heating. Low U-values, exceeding the Part L standards, and robust construction details are proposed to reduce heat losses further.

Eliminating thermal bridging is critical for reducing heat demand and complying with the Part L Fabric Energy Efficiency Target. The Part L guidance in limiting thermal bridging by applying insulation continuously, thus avoiding any breaks, and using less conductive materials, will be followed to achieve a low y value.

Certified thermal details and products should be used to ensure building fabric is designed to the highest standards. At this stage, performance targets following Government approved details (Scottish Building Standards) have been used with regards to psi-values.

Airtightness

Robust construction details will be also used to reduce heat losses through infiltration, thus improving the buildings' air tightness. An air permeability rate of 4 m^3/m^2hr @50Pa is targeted for the scheme at construction.

Performance targets

The tables below list the key targets with regards to the building fabric thermal performance, as assumed in the energy assessment. Achieving the below targets will reduce the energy demand prior to considering additional energy efficiency measures and renewable energy technologies for the proposed development.

Table 5: Proposed building fabric specifications - Domestic

Domestic elements		
U-value	Walls	0.15 – Exposed walls
[W/m²K]		0.20 – Semi exposed walls (adjacent to unheated communal areas)
		0.20 – Ashlar walls (under eaves)
		0.00 – Party walls (for a fully filled cavity with effective sealing at all exposed edges and in line with insulation layers in abutting elements)
	Floor	0.13 – Ground floor, First floor (above unheated areas) & Exposed floor elements
	Roof	0.10
	Windows	1.20 – g-value: 0.50
	Doors	1.00 (Solid entrance doors)
Air permeability	5 m³/m²hr @50Pa	
Thermal bridging	Appendix E psi-values have been assumed at this stage for the proposed development. These are based on Government approved details (Scottish Building Standards).	

Table 6: Proposed building fabric specifications – Non-Domestic

Non-Domestic elements				
U-value [W/m²K]	Walls	0.15		
	Floor	0.13		
	Roof	0.10		
	Windows	1.20 – g-value: 0.40		
	Doors	1.00 (Solid entrance doors)		
Air permeability	5 m³/m²hr @50Pa			

Use energy efficiently

After reducing energy demand, the next step is to use energy efficient building services systems, low energy lighting and energy saving controls to reduce fuel consumption.

Space Heating and Hot Water

An all-electric, fossil fuel free heating strategy, using heat pumps, is proposed to take advantage of the ongoing grid decarbonisation, thus allowing the development to become net zero carbon in due course.

Individual Air Source Heat Pumps (ASHPs) are proposed for the houses to provide both space heating and domestic hot water. A communal energy centre with ASHPs is proposed for each apartment block to provide low carbon heat. To estimate carbon savings from ASHPs, gas-fired boilers are assumed at this stage.

Ventilation

Dwellings will rely on natural ventilation with intermittent extract fans for maintaining indoor air quality, in line with Part F 2021 Volume 1 requirements.

Building services insulation

The hot water distribution network, including any hot water tanks and internal pipework, will be insulated to high standards to reduce heat losses. This is critical not only for reducing energy demand but also reduce heat gains from pipework in summer that could potentially increase the risk of overheating.

Allowance for the remaining system pipework losses will be accounted for within the final heat source selection and sizing. Heat losses from the LTHW distribution network will be calculated in detail at next stage once the details of the final pipework configuration are established.

Lighting

Low energy light fittings of LED types will be used within the dwellings and also in all communal areas. PIR sensors will be provided in communal areas to reduce energy consumption further.

Commercial units

The energy assessment of the commercial units has been carried out on the basis of Shell and Core development. Reasonable assumptions have been made at this stage, regarding the efficiencies of services that will be installed during first fit-out work, in the calculation of the building primary energy rate and building emission rate.

Commercial units are assumed to be served by reverse cycled heat pumps, e.g. in the form of a Variable refrigerant Flow (VRF) system or DX split units, to provide space heating and comfort cooling. Direct electric water heaters are assumed for hot water supply. The units are assumed to rely mostly on natural ventilation with mechanical ventilation provided in back of house areas in the form of extract ventilation e.g. in toilets and kitchen facilities. Low energy light fittings is assumed for all spaces, including display lighting, and energy saving lighting controls, such as PIR sensors in secondary areas e.g. toilets and daylight sensors in front of house areas.

Performance targets

The tables below list the key performance targets with regards to energy efficiency, for the domestic and non-domestic elements separately.

Table 7: Proposed building services specifications - Domestic

Domestic elements		
Space heating & DHW	Houses: Individual ASHPs (SAP default SCOP) with thermal storage (Assumed volume: 300L & Heat loss rate <2.36kWh/24h)	
	Flats: Heat Interface Units (HIUs) installed in each flat, fed by a communal energy centre using ASHPs SCOP: 3.0 A distribution loss factor of 1.23 has been assumed at this stage.	
Heating controls	Houses: Time and Temperature zone control	
	Flats: Charging system linked to use of community heating, with programmer and TRVs	
Water usage	Dwellings to achieve a water use target less than 105 litres/person/day Showers: 9 litres/min assumed at this stage	
Ventilation	Natural ventilation with intermittent extract fans	
Lighting	All light fittings will be dedicated low energy types i.e. LED fittings (Notional building specifications have been used at this stage)	

 Table 8: Proposed building services specifications – Non-Domestic

Non-Domestic elements (Shell & Core)		
Heating & Comfort cooling	A VRF system is assumed to provide space heating and comfort cooling within each commercial unit	
	SCOP 4.0 / SEER 5.50/ EER 3.5	
Hot water	Hot water in the commercial units will be provided by point of use 100% efficient electric heaters	
Ventilation	Extract ventilation assumed in the following areas:	
	Kitchen: 20ACH (SFP: 0.8 W/l/s)	
	Toilets: 10ACH (SFP: 0.4 W/l/s)	
Metering	All systems and lighting systems have provision for metering that warns "out of range" values	
Power factor	>0.95	
Lighting	All light fittings will be dedicated low energy types i.e. LED fittings	
	General lighting: 100 luminaire lm/W	
	Display lighting: 80 luminaire lm/W (with time switch)	
	PIR sensors (Auto on/off) in BOH areas (toilets, circulation)	
	Daylight sensors in main areas	

Overheating & Cooling assessment

The proposed design follows the below cooling hierarchy to reduce the risk of overheating and therefore demand for active cooling.

Table 9: The Cooling Hierarchy

reduce the amount of heat entering a building through

orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure

minimise internal heat generation through energy efficient design

manage the heat within the building through exposed internal thermal mass and high ceilings

provide passive ventilation

provide mechanical ventilation

provide active cooling systems.

Measures to eliminate the risk of overheating have been considered and will be integrated in the design of the new dwellings. The following will be applied to maintain thermal comfort during summer within the main living areas:

- Openable windows throughout the day to allow for natural ventilation.
- Windows can be also left open during the night to allow for night-time cooling i.e. cool down the structure by taking advantage of lower external temperatures at night.
- Ground floor windows and windows in accessible rooms will be designed secure so they can be left open at night or when unoccupied.
- Tenants will be advised to purchase A-rated appliances of low energy consumption to reduce internal heat gains. Energy efficiency light fittings

that emit less heat than standard types thus reducing overheating will be also specified.

An Overheating Assessment, presented in Appendix B, has been carried out for the proposed scheme against the Part O 2021 overheating criteria. Results show that all assessed unit types comply with the overheating criteria.

Non-regulated energy use

The energy consumption and associated carbon emissions for non-regulated end uses have been calculated at this stage, using SAP 10 and the NCM for the domestic and non-domestic elements respectively. The carbon emission rate due to the small power, cooking and other appliances is circa 360 tnCO₂.

The following strategies are proposed to reduce non-regulated energy use in dwellings:

- Kitchens should be fitted out with energy efficient A-rated appliances or, alternatively, information about high efficiency appliances should be provided to future occupants.
- Installation of energy meters with display monitors, for encouraging occupants to become more interested and involved in how energy is being used in their house.
- Information should be provided to occupants explaining best practice operation of the installed systems to reduce the energy costs and carbon emissions.

It is estimated that proposed strategies may reduce unregulated carbon emissions by at least 10%. However, at this stage, this can only be an assumption as small power consumption depends mainly on occupant's behaviour.

Heating infrastructure

Once demand for energy has been minimised, the next step of the Energy Hierarchy is about exploiting local energy resources (such as secondary heat) and supplying energy efficiently and cleanly to reduce CO_2 emissions further. The opportunity to connect to a local district heating network, for providing low carbon heat to the proposed development, has been explored by the team.

Given that a heat network is not currently available in close proximity to the proposed site, an all-electric heating system using heat pumps is proposed for providing low carbon heat and take advantage of the ongoing grid decarbonisation, for achieving net zero carbon in the long term.

Renewable energy

Low and zero carbon systems, generating renewable energy on site, have been considered to further reduce carbon emissions, in line with the Council's policies. A feasibility study of the following renewable energy technologies has been completed at this stage:

- Biomass Boilers;
- Wind Turbines;
- Heat Pumps (Ground/Water/Air);
- Solar Hot Water Heating;
- Photovoltaic panels.

Air Source Heat Pumps (ASHPs) and Photovoltaic (PV) panels were identified as the most appropriate technologies for this site. Appendix C of this report provides brief commentary on the technologies not considered suitable for the scheme.

Air Source Heat Pumps

Individual ASHPs and communal energy centres using ASHPs are proposed for the houses and apartment blocks respectively to provide low carbon heat. Commercial units are assumed to have reverse-cycled heat pumps for providing both space heating and comfort cooling when required.

ASHPs work by absorbing heat from the outside air and transferring it to a fluid, which is compressed to increase its temperature. This heat is then transferred from the compressed fluid into the central heating system, to use for both heating and hot water.

At detailed design stage, the external plant will be designed such that the noise levels from the ASHP units will be in accordance with relevant industry standards to reduce or eliminate any noise pollution.

The system will comply with the minimum performance requirement set out in Enhanced Capital Allowance. The end user will be provided with detailed information on how to control and operate the system in the most efficient way.

Table 10: Proposed renewable energy technology (ASHPs)

Low Zero Carbon technologies			
Air Source Heat Pumps (ASHPs)	Heating fuel	Electricity	
	SCOP	3.0 – Dwellings	
		4.0 – Commercial units	

Photovoltaic panels

Installation of Photovoltaic panels, mainly on flat roofs and pitched roof areas facing due south, is proposed for all the houses and apartment blocks. Where possible, the PV installation will be maximised, considering though the following restrictions:

- Parts of the apartment blocks' available roof area will be occupied by the energy centre hosting the outdoor ASHP and other plant units.
- Adequate space from the roof edge should be provided for safety and access, and also avoiding overshadowing from the roof parapet.
- When installed on flat roofs, PVs should be installed at a distance from any surrounding roof features that may overshadow them, such as plant screens, stair landings, lift and riser shafts, flues etc. Enough space should be also allowed between successive rows to avoid overshadowing and allow for access.

At next stage a MCS accredited team should be consulted to ensure the output of the PV array is maximised by optimising the location and orientation of the PVs and using the most efficient panels available in the market. The system's layout should consider local health and safety requirements, including accessibility requirements for system maintenance, cleaning the modules, and carrying out maintenance on any of the components. The following table shows this stage assumptions regarding PVs, as used in SAP. Appendix E shows a breakdown of the proposed PV arrays per house type and apartment block.

The energy output of the PV panels, circa 618 MWh, will be used to meet the energy demand of the houses and the energy demand of the blocks' communal energy centre. PV panels will offer carbon savings of circa 86 tnCO₂ per year.

Table 11: Proposed renewable energy technology (PVs)

Low Zero Carbon technologies		
Photovoltaic (PV) panels	Size	1.00 m x 1.70 m
	Output	350 Wp
	Orientation	Varies, majority due SE/SW
	Inclination	10 degrees (Flats) 30-45 degrees (Houses)
Proposed PV arrays	No. PVs	581 no. total – apartment blocks 2,040 no. total – houses
	Total area	4,456 m ²
	Total output	917kWp

Carbon Savings

In order to demonstrate that the energy hierarchy has been followed and that, accordingly, reduction in energy demand has been prioritised over the use of low and zero carbon energy, it is necessary to show the carbon reduction achieved both before and after the provision of low and zero carbon energy separately. The baseline for the carbon reduction is the relevant TER.

The following table demonstrates the overall reduction in regulated carbon emissions that can be achieved for the proposed development. An overall reduction of 70% over the Part L 2021 target emission rate could be achieved by integrating the recommended energy efficiency measures and renewable energy technologies to the proposed design.

Table 12: Regulated carbon dioxide emissions (site-wide)

	Carbon em	issions rate
	tnCO2 per annum	% Reduction from baseline
Baseline: Part L 2021 of the Building Regulations Compliant Development	693.5	-
Proposed scheme: After energy demand reduction & renewable energy	214.4	69%

The following figure shows the percentage reduction achieved as a result of the Low and Zero Carbon technologies proposed for on-site generation of renewable energy.

Figure 4: Carbon dioxide savings from LZC technologies

Site-wide Part L 2021 carbon Emissions

The following table demonstrates that the proposed development complies with the Approved Document L, Volumes 1 & 2 energy performance targets.

Table 13: Part L, Volume 1 compliance

Domestic elements	Target	Proposal
Primary energy rate	62.48 kWh _{PE} /m ²	38.95 kWh _{PE} /m ²
Emission rate	11.8 kgCO ₂ /m ²	3.4 kgCO ₂ /m ²
Fabric energy efficiency rate	34.7 kWh/m ²	33.6 kWh/m ²

Table 14: Part L, Volume 2 compliance

Non-domestic elements	Target	Proposal
Primary energy rate	115.11 kWh _{PE} /m ²	112.57 kWh _{PE} /m ²
Emission rate	10.76 kgCO ₂ /m ²	10.42 kgCO ₂ /m ²

Conclusion

In summary, this Energy Statement confirms that the proposed design incorporates the energy efficiency features required to comply with the current planning policy requirements of the Norwich Local Plan.

A summary of the key energy efficiency features and LZC technologies proposed for the development is detailed below. As a result, the scheme could achieve a 69% reduction over Part L 2021 target emission rate.

Table 15: Energy	Strategy – Key features
	Passive design
	High performance building fabric
	 Robust construction details, for reducing thermal bridging
\sim	Low airtightness
	 Optimised glazing to wall ratios, for reducing solar gains
	Energy efficiency
7 (3)	 All-electric systems, taking advantage of ongoing grid decarbonisation for achieving NZC
(VV	LED light fittings
	 Well insulated pipework, for reducing distribution losses and heat demand
	Renewable technologies
	• Air Source Heat Pumps, for low carbon heating

• Photovoltaic Panels, for on-site energy generation

Appendix A - Planning policies

This section details the key legislative, and the current and emerging planning policy requirements of Norwich City Council. It provides the legislation and regulatory planning context against which this Energy Statement appraises the proposals.

Joint Core Strategy for Broadland, Norwich and South Norfolk (2011)

- Policy 3: Energy and water

Norwich development management policies local plan (2014)

- Policy DM1: Achieving and delivering sustainable development
- Policy DM2: Ensuring satisfactory living and working conditions
- Policy DM3: Delivering high quality design
- Policy DM4: Providing for renewable and low carbon energy

South Norfolk Local Plan: Development Management Policies Document (2015)

- Policy DM 3.8 Design Principles applying to all development
- Policy DM 4.1 Renewable Energy

Appendix B - Overheating Assessment

Overheating Assessment

Deal Ground & May Gurney, Bracondale, Norwich NR1 2EG

Reserved matters application proposal for Serruys Property Co Ltd

June, 2023

Contents

Document Control	2
Executive summary	3
Introduction	3
The applicant	3
Site description	3
Proposed development	3
Overheating criteria	5
Approved Document 0 2021	5
CIBSE TM59 Overheating criteria for dwellings	6
CIBSE TM59 Overheating criteria for communal corridors	6
Thermal modelling	7
Passive design	
Orientation	8
Building fabric & fenestration	8
Glazing ratios	9
Shading	9
Natural Ventilation	9
Energy efficiency lighting & appliances	9
Heat distribution infrastructure	9
Green areas	9

Modelling input data	10
Analysis results	14
Dwellings	14
Communal corridors	14
Guidelines on managing the risk of overheating	16
Conclusion	.17
Appendix A – CIBSE 2020s DSY1 results	.18
Appendix B – Assessed unit types	20

Document Control

PREPARED BY:	PANOS DALAPAS		
	Associate Director		
	ESG Consultancy - Energy Consultancy		
	FOR AND ON BEHALF OF CBRE LTD.		
Approved By:	NAZLI DABIDIAN		
	Director		
	ESG Consultancy - Energy Consultancy		
	FOR AND ON BEHALF OF CBRE LTD.		
Date of Issue:	16 th June 2023	Version:	02
Document Reference:	Deal Ground_Overheating Assessment_v02	Status:	Final

1

Executive summary

This Overheating Assessment has been prepared on behalf of Serruys Property Co Ltd ('the Applicant') in support of a reserved matters planning application for a mixed development consisting of a maximum of 670 dwellings. The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority.

The proposal seeks the approval of the reserved matters for the approval of siting, layout, appearance and landscaping for 670 dwellings pursuant to outline planning application (full details of access) for a mixed development consisting of a maximum of 670 dwellings; a local centre comprising commercial uses (A1/A2/A3): a restaurant/dining quarter and public house (A3/A4); demolition of buildings on the May Gurney site (excluding the former public house); an access bridge over the River Yare; new access road; car parking; flood risk management measures; landscape measures including earthworks to form new swales and other biodiversity enhancements including the re-use of the Grade II Listed brick Kiln for use by bats.

The ESG Consultancy Team of CBRE Limited have been commissioned to develop the strategy for the Application Site to mitigate the risk of overheating, including consideration of the cooling hierarchy, and inform design development for the proposed scheme design against relevant planning policies, technical guidance and legislation.

An overheating assessment, including dynamic thermal modelling, has been carried out for the proposed development, in line with the guidance and data sets in CIBSE

TM59 and TM49 respectively, taking into account the associated Approved Document O requirements.

The assessment identifies those apartments that are at higher risk of overheating. These include units with a larger glazing area, units with S/SW-facing windows, top-floor units receiving higher solar gains, units where cross ventilation is not possible and units with easily accessible windows. A sample of unit types, representing these dwellings, have been assessed against the Part O 2021 overheating criteria.

The analysis results show that all the sample rooms, assessed against the DSY1 weather data, comply with the overheating criteria, i.e. during moderately warm summer conditions the risk of overheating is low. The risk of overheating in communal corridors has been also assessed. The design of the proposed house types has been developed in line with the guidance provided in Part O's simplified method, with regards to glazing ratios. Therefore, these have been excluded by the dynamic thermal modelling analysis described in this report.

The following sections outline the key design principles integrated in the proposed design for mitigating the risk of overheating. The report also provides guidelines on how to operate dwellings in the most efficient way to avoid overheating during warmer weather. These should be included in a Home User Guide, provided to the future occupants.

2

Introduction

This Overheating Assessment has been prepared on behalf of Serruys Property Co Ltd ('the Applicant') in support of a reserved matters planning application for a mixed development consisting of a maximum of 670 dwellings. The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority.

The ESG Consultancy Team of CBRE Limited have been commissioned to develop the strategy for the Application Site to mitigate the risk of overheating, including consideration of the cooling hierarchy, and inform design development for the proposed scheme design against relevant planning policies, technical guidance and legislation.

An overheating assessment, including dynamic thermal modelling, has been carried out for the proposed development, in line with the guidance and data sets in CIBSE TM59 and TM49 respectively, taking into account the associated Approved Document O requirements.

The applicant

3

Serruys Property Co Ltd (hereafter referred to as 'the Applicant') is seeking reserved matters planning permission for a mixed development consisting of a maximum of 670 dwellings. The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority. The Applicant has appointed the ESG Consultancy Team of CBRE Limited (CBRE) to embed sustainability within the design proposal, working alongside the other CBRE colleagues also working on the scheme, namely planning and EIA.

Site description

The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority. The site lies within a mile of the City Centre and is 1km from Norwich Railway Station.

Proposed development

The proposal seeks the approval of the reserved matters for the approval of siting, layout, appearance and landscaping for 670 dwellings pursuant to outline planning application (full details of access) for a mixed development consisting of a maximum of 670 dwellings; a local centre comprising commercial uses (A1/A2/A3): a restaurant/dining quarter and public house (A3/A4); demolition of buildings on the May Gurney site (excluding the former public house); an access bridge over the River Yare; new access road; car parking; flood risk management measures; landscape measures including earthworks to form new swales and other biodiversity enhancements including the re-use of the Grade II Listed brick Kiln for use by bats.

Figure 1: Application Boundary shown in red

Figure 2: illustrative masterplan

4

Overheating criteria

Approved Document 0 2021

5

Part O 2021 of the Building Regulations sets the requirement (O1) to tackle the risk of overheating in respect of a dwelling, institution or any other building containing one or more rooms for residential purposes, other than a room in a hotel ("residences"). This is to:

•Limit unwanted solar gains in summer.

•Provide an adequate means to remove heat from the indoor environment.

Compliance with the above requirement can be demonstrated by using one of the following methods: the simplified method and the dynamic thermal modelling method.

The simplified method provides guidance on limiting solar gains in terms of maximum allowed glazing areas depending on building location, façade orientation and whether cross ventilation is possible.

The design of the proposed house types has been developed in line with the guidance provided in the simplified method, with regards to glazing ratios.

The second option provides a standardised approach to predicting overheating risk for residential buildings that uses dynamic thermal modelling, considering the following:

- CIBSE's TM59 methodology for predicting overheating risk.
- The limits on the use of CIBSE's TM59 methodology set out in ADO paragraphs 2.5 and 2.6.
- The acceptable strategies for reducing overheating risk in ADO paragraphs 2.7 to 2.11.

Given that a communal low carbon heating system per residential block is proposed for providing space heating and hot water, the dynamic thermal modelling method has been followed for assessing the risk of overheating in the proposed apartments. This report provides details of the assessment and presents results in terms of compliance with the CIBSE TM59 overheating criteria, explained in the following section.

CIBSE TM59 Overheating criteria for dwellings

Design methodology for the assessment of overheating risk in homes

6

CIBSE has published TM59 'Design methodology for the assessment of overheating risk in homes' in May 2017. The guidance replaces TM52 to be used in residential buildings.

TM59 provides designers with a standardised approach to predicting overheating risk for residential building designs using dynamic thermal analysis.

The methodology provides a baseline for all domestic overheating risk assessments. Studies for buildings of multi-residential character, including student accommodation, care homes etc. can also employ this methodology as a starting point, provided that any deviation is clearly stated and justified.

Compliance is based on passing both of the following two criteria.

CIBSE TM59 Overheating criteria for communal corridors

According to CIBSE TM59, the inclusion of corridors in the overheating analysis is mandatory where community heating pipework runs through them. The overheating test for corridors should be based on the number of annual hours for which an operative temperature of 28°C is exceeded.

Whilst there is no mandatory target to meet, if an operative temperature of 28°C is exceeded for more than 3% of the total annual hours, then this should be identified as a significant risk within the report.

Table 1: CIBSE TM59 Overheating criteria for dwellings

Hours of exceedance (H_e) criteria for homes predominantly naturally ventilated

- $\begin{array}{ll} \textit{Criterion (a)} & \mbox{For living rooms, bedrooms and kitchens: the number of hours} \\ (H_{e}) \mbox{ during which } \Delta T, \mbox{ the difference between the actual operative} \\ \mbox{ temperature in the room at any time } (T_{op}) \mbox{ and } T_{max} \mbox{ the limiting} \\ \mbox{ maximum acceptable temperature, is greater than or equal to one} \\ \mbox{ degree (K) during the period May to September inclusive shall} \\ \mbox{ not be more than 3 per cent of occupied hours.} \end{array}$
- Criterion (b) For bedrooms only: to guarantee comfort during the sleeping hours the operative temperature in the bedroom from 10 pm to 7 am shall not exceed 26°C for more than 1% of annual hours. (Note: 1% of the annual hours between 22:00 and 07:00 for bedrooms is 32 hours, so 33 or more hours above 26°C will be recorded as a fail).
 - Criterion (a) provides an understanding of how often a room is likely to exceed its comfort range during the summer months.
 - Criterion (b) applies only to bedrooms, assessing thermal comfort during night-time throughout the year.

Thermal modelling

Thermal modelling has been carried out using IES Virtual Environment (Version 2023.0.0.0). IES software is approved by CIBSE AM11 'Building Energy and Environmental Modelling' (2015) to provide full dynamic thermal analysis.

A sample of unit types, representing dwellings with a higher risk of overheating, have been identified and assessed against the Part O 2021 overheating criteria, in line with the guidance and data sets in CIBSE TM59 and TM49 respectively.

The model geometry (*Figure 3*) was based on the planning drawings (Issue 06.05.2023) received from Stolon Studio Architects.

Figure 3: IES VE thermal model

Passive design

The strategy to mitigate the risk of overheating in the proposed dwellings follows the below Cooling Hierarchy, prioritising passive design solutions to reduce excessive heat gains.

reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure

minimise internal heat generation through energy efficient design

manage the heat within the building through exposed internal thermal mass and high ceilings

provide passive ventilation

provide mechanical ventilation

provide active cooling systems.

The following passive design measures have been incorporated in the design of the proposed development.

Orientation

8

The orientation of each dwelling is expected to vary across the development. To reduce the risk of overheating, glazing areas on the south and west facades have been optimised to reduce solar gains, as rooms on these elevations tend to have a higher risk of overheating.

Units with windows on these elevations have been included in this study, to assess the risk of overheating considering the highest solar gains possible.

Building fabric & fenestration

Building fabric of high performance, in terms of U-values and airtightness, will be specified to reduce heat transfer from the ambient environment, during warmer weather. In addition, all party walls/floors between apartments and plant rooms, risers etc. will be well insulated to prevent any heat transfer. Please refer to the Energy Statement issued by the Energy Consultancy team of CBRE Limited for information on the targeted fabric performance specifications.

Windows of high performance will be provided to all units. These will have a low U-value (1.20 W/m²K) to reduce heat losses during winter and prevent heat transfer from outside during summer. Given the above thermal performance required for the windows, these are likely to meet the solar performance target set for both the flats and houses, G-value of 0.50.

Thermal mass is a property that enables building materials to absorb, store, and later release significant amounts of heat. Therefore, depending on the proposed construction system, dwellings could benefit from the structure's inherent thermal mass that when combined with a night-time cooling strategy can store excess heat during the day and remove it during the night.

Glazing ratios

Glazing areas have been kept at optimum level to allow daylight in while reducing solar gains in summer and minimise the risk of overheating. The guidance provided in the simplified method of Part O, has been applied to the proposed house types. Dynamic thermal modelling, allowing for more flexibility regarding the window design, has been used to assess the risk of overheating in sample apartments.

Shading

a

External shading, in the form of balconies and deep window recess, is proposed throughout the scheme to reduce solar gains further.

Occupants should be advised to install internal shading for additional solar control. Internal shading should be in the form of horizontal or vertical fins depending on orientation to not intervene with the window free area. In line with Part O, internal shading and foliage has not been considered in the overheating modelling.

However, both measures could help mitigate the risk of overheating, in particular during more severe summer weather conditions as described by the DSY2 and DSY3 weather files.

Natural Ventilation

A natural ventilation strategy with fully openable windows is proposed for all dwellings. The openable area of the windows has been optimised to increase fresh air supply.

Ground floor and easily accessible rooms, in particular bedrooms, should have windows that can be opened securely at night. Part O guidelines on security should be followed to allow for fresh air supply when the rooms are not occupied. Open windows or doors can be made secure by using any of the following:

- fixed or lockable louvred shutters,
- fixed or lockable window grilles or railings.

Energy efficiency lighting & appliances

Internal heat generation will be minimised by installing energy efficient light fittings of LED types. Future occupants should be also advised to use A-rated appliances that emit lower heat gains to reduce the risk of overheating.

Occupancy PIR sensors should be also provided in all communal circulation areas to reduce internal heat gains from lighting further.

Heat distribution infrastructure

Well insulated pipework will be specified to reduce heat losses from hot water pipes running across communal corridors and inside dwellings. The length of the heat distribution pipework will be minimised as much as possible and insulation will be applied continuously to reduce heat losses further.

With conventional community heating systems, the distribution flow and return temperatures are normally around 80°C / 60°C. The proposed heating system, using ASHPs, could be designed at lower temperatures, circa 55°C / 50°C. Therefore, with the lower flow and return temperatures, heat losses will be reduced considerably.

Green areas

The proposed landscape design will contribute to improving the site's microclimate thus reducing the impact of the heat island effect.

Trees provided at street floor level will also provide an additional level of shading to ground floor rooms. The impact of these has not been included in our analysis, in line with Part O.

Modelling input data

The following table summarises the key input data used in the overheating assessment of the proposed scheme. The following design principles should be followed to ensure compliance with Part O 2021. The output of our simulation corelates to this input data and is only correct when the input data is valid.

Part O 2021	Modelling input data
Building category	Category II: Normal expectation (for new buildings and renovations).
Sample size	The assessed dwellings have been selected in line with the guidance provided in Section 3.1 of TM59. These include unit types with larger glazing areas, units with S/SW-facing windows, top-floor units receiving higher solar gains and units where cross ventilation is not possible.
	Please refer to Appendix B with regards to the sample unit types assessed against Part O.
Weather file	As required by TM59, the study has been carried out using the latest CIBSE weather data file for Norwich: Design Summer Year (DSY1, representing a moderately warm summer) weather file for 2020s, high emissions, 50% percentile scenario.
Ventilation strategy	Thermal modelling has been carried out assuming fully openable windows throughout the day (window frame set at 25%). Opening types and areas have been modelled as shown on elevations.
	Windows have been also assumed to be left fully open during the night, as per Part O, for taking advantage of the lower external temperatures.
Window and door openings	 When a room is occupied during the day (8am to 11pm), openings have been modelled to operate as per the following Part O guidance. Start to open when the internal temperature exceeds 22°C. Be fully open when the internal temperature exceeds 26°C. Start to close when the internal temperature falls below 26°C.

	- Be fully closed when the internal temperature falls below 22°C.				
	At night (11pm to 8am), openings have been modelled as fully open if both of the following apply.				
	- The opening is o	n the first floor	or above and not easily accessible.		
	- The internal tem	perature excee	ds 23°C at 11pm.		
	In all dwellings, internal doors in living room, kitchens and bedrooms have been assumed to be left open if needed during the day to allow for cross ventilation thus increasing air movement inside the house. These are kept closed, however, at night for privacy as per TM59 guidance. Window panes shown as top-hung are assumed to open by 30 degrees.				
Air speed	The modelled air speed inside the rooms have been set at 0.1 m/s in line with the TM59 methodology.				
Exposure type	A conservative at this stage exposure type for semi-exposed walls has been assumed for all windows.				
Air infiltration	0.15 ACH.				
Pipework losses (communal	To minimise heat losses f assumptions have been n	rom hot water p nade with regar	pipework, highly insulated pipes will run through the communal areas of the apartment blocks. The following ds to distribution pipework losses.		
corridors)	Corridor ceiling void	500 W			
	LTHW riser	72 W			
	HIU units	78 W			
	These are early-stage co design are known.	nservative assu	mptions that should be reviewed at next design stage when the details of the proposed specifications and		

Part O 2021	Modelling input data						
TM59 internal gains	Room	No. people	Occup. Sensible	Occup. Latent	Equip. Sensible		
Equipment	Single Bed	1 no.	75 W	55 W	80 W		
	Double Bed	2 no.	150 W	110 W	80 W		
	Studio	2 no.	150 W	110 W	450 W		
	Living room/ Kitchen	Same with	75 W per	55 W per	450 W		
	Living room	no. of bedrooms	person	person	150 W		
	Kitchen				300 W		
	The following graphs show the TM59 heat gain profiles used in the assessment.						
TM59 internal gains	Low energy light fittings (LED) will be installed throughout the dwellings.						
Lighting	A power density of 2W/sqm has been assumed in line with TM59 (switched on from 18:00 to 23:00).						
TM59 Heat gain profiles	Single bedroom occupancy 1.00 0.75	Single bedroom equipment	Double bedroom occupancy 0.75 0.50 0.25 0 3 7 % 3 % 2 % %	m Double bedroon equipment	a 1.00 0.75 0.50 0.25 0.55 0.25 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	In room/kitchen Uving room/kitchen equipment	n 1.00 5 Studio occupancy Studio equipment 1.00 0.75 0.50 0.55 0.

Analysis results

Dwellings

Dynamic thermal modelling has been carried out in line with the guidance and data sets in CIBSE TM59 and TM49 respectively, taking into account the associated Approved Document O requirements.

The risk of overheating has been assessed against the CIBSE DSY1 weather file. The table below provides a summary of the analysis results.

Table 2: No. of assessed room types passing TM59 Overheating criteria

Assessed units	No.	Criterion (a)	Criterion (b)	Part O 2021 Compliance
Flats – Double Bedrooms	4	Pass	Pass	Pass
Flats – Single Bedrooms	6	Pass	Pass	Pass
Flats – Open plan Kitchen/Living rooms	4	Pass	Pass	Pass

Results show that all assessed unit types pass the TM59 overheating criteria. Detailed results for each room, in terms of number of occupied hours when internal dry resultant temperature is within the TM59 comfort range, are presented in Appendix A.

Communal corridors

The risk of overheating in communal corridors has been also assessed, in line with CIBSE TM59. The assessment at this stage was carried out for core communal corridors with no windows or long corridors with only one side window.

During extreme weather conditions, the following ventilation strategy should be considered to reduce the risk of overheating in the communal corridors and, therefore, reduce heat transfer to the adjacent dwellings. Communal corridors, where natural ventilation is not possible or not effective enough, should utilise an environmental ventilation system which could sit along site (and be part of) the smoke extract system. This involves a small motorised environmental ventilation damper being provided at each floor within the smoke shaft wall. The finer details of this will be part of the design development through the next phase. A supply flow rate of circa 3ACH would be required to ensure the risk of overheating in communal corridors is reduced. The following table provides results in terms of annual percentage of hours when operative temperature exceeds 28°C. Once the proposed ventilation strategy has been developed in detail, internal conditions in the communal areas will be assessed further.

Table 3: Risk of overheating in communal corridors

Room	% Annual hrs when dry resultant T exceeds 28°C
	(< 3%)
B6. Communal corridor	Pass (1.2%)
B7. Communal corridor	Pass (2%)

Guidelines on managing the risk of overheating

The following mitigation measures should be considered, in the event of a heatwave, to minimise the risk of overheating in the proposed dwellings and ensure thermal comfort for future occupants. These should be included in a Home User Guide distributed to the occupants.

- Comprehensive instructions on how to operate windows should be given to future occupants to control thermal comfort in their rooms.
- Occupants should be advised to leave the windows open whenever the internal room temperature rises over 22°C. However, when the external temperature is higher than the internal temperature (in hot summer days) windows need to remain closed for that period. As soon as the external temperature cools down, these should be left open again to provide fresh air in the dwellings.
- Occupants should be advised to leave their windows open during the night on warm summer days to take advantage of the low external temperatures during the night for cooling down their rooms and remove the excessive heat that builds up throughout the day.
- Occupants should be advised to install internal shading devices e.g. curtains or blinds of low solar transmittance to control solar gains. These should be in the form of horizontal or vertical fins depending on orientation to not intervene with the window free area. Use of internal shading devices is recommended on sunny and warm days to prevent direct solar gains been transmitted into the rooms. These should be left closed when the rooms are not occupied.

- Occupants should be advised that, when using the curtains/blinds, they should make sure that these do not cover the openable area of the windows completely so that the air movement is not blocked. Curtains should be installed such that the main openable area of the window is not fully covered but allow for as much air flow as possible. Depending on the position of the sun they should raise/open the shading devices to those windows that do not receive direct sunlight thus allowing more fresh air.
- All fixed building elements such as ceiling lights and fridges will be very energy efficient. It is essential that the occupants also use energy efficient equipment, for example, energy efficient light fittings of LED types and A+ rated electrical appliances such as TVs that consume less energy should be specified and promoted to reduce internal heat gains.
- Occupants should be also advised against prolonged use of any appliances during hot summer days.

Conclusion

This Overheating Assessment has been prepared on behalf of Serruys Property Co Ltd ('the Applicant') in support of a reserved matters planning application for a mixed development consisting of a maximum of 670 dwellings. The site is located in East Norwich, on the edge of Trowse Newton, bordering the Norfolk Broads. It straddles three local Authorities: Norwich City Council, South Norfolk and the Broads Authority.

The ESG Consultancy Team of CBRE Limited have been commissioned to develop the strategy for the Application Site to mitigate the risk of overheating, including consideration of the cooling hierarchy, and inform design development for the proposed scheme design against relevant planning policies, technical guidance and legislation.

The analysis results show that all the sample rooms, assessed against the DSY1 weather data, comply with the overheating criteria, i.e. during moderately warm summer conditions the risk of overheating is low. The risk of overheating in communal corridors has been also assessed. In corridors where natural ventilation is not possible or limited, mechanical means of ventilation should be provided to comply with the relevant overheating criterion. The design of the proposed house types has been developed in line with the guidance provided in Part O's simplified method, with regards to glazing ratios, thus excluded from the dynamic thermal modelling analysis described in this report.

To ensure minimum disruption during the event of a hot spell, it is important that occupants are aware of how to operate the building following the guidelines provided in Section 8. These should be included in a Home User Guide distributed to the occupants.

This report and the supporting thermal modelling are based on guidance provided by CIBSE TM59. It is also using predicted weather conditions as described in TM59 and assumes future occupants will follow the recommendations of this report. The output of our simulation corelates to this input data and is only correct when the input data is valid. All results provided by an overheating analysis are indication of risk of overheating rather than an accurate prediction of absolute internal temperatures under operational conditions. Occupant perception of thermal comfort is a complex area and the most recent CIBSE guides TM59 have tried to consider this to some extent, however they do not claim to predict risk of discomfort for every occupant.

Appendix A - CIBSE 2020s DSY1 results

Naturally ventilated rooms – Criterion (a)

Criterion (a) states that for living rooms, kitchens and bedrooms, the number of hours during which T is greater than or equal to 1K from May to September (or November to March for southern hemisphere locations) shall not exceed 3% of occupied hours.

Room name	Occupied hours	No. hours DT ≥ 1°K	% Occupied hours DT ≥ 1°K	Criterion (a) check
B1-F7-SINGLE BEDROOM	3672	33	0.9	Pass
B1-F7-LIVING/KITCHEN	1989	53	2.7	Pass
B1-F7-BEDROOM 1	3672	9	0.2	Pass
B1-F7-BEDROOM 2	3672	19	0.5	Pass
B2-F4-DOUBLE BEDROOM	3672	37	1.0	Pass
B2-F4-LIVING/KITCHEN	1989	47	2.4	Pass
B6-F4-DOUBLE BEDROOM	3672	25	0.7	Pass
B6-F4-SINGLE BEDROOM 1	3672	42	1.1	Pass
B6-F4-SINGLE BEDROOM 2	3672	45	1.2	Pass
B6-F5-LIVING/KITCHEN	1989	49	2.5	Pass
B7-F5-DOUBLE BEDROOM 1	3672	48	1.3	Pass
B7-F5-SINGLE ROOM	3672	52	1.4	Pass
B7-F5-DOUBLE BEDROOM2	3672	42	1.1	Pass
B7-F5-LIVING/KITCHEN	1989	56	2.8	Pass

Naturally ventilated rooms – Criterion (b)

Criterion (b) states that the operative temperature of the bedrooms from 22:00-07:00 shall not exceed 26°C for more than 1% of annual hours (33 hours is therefore recorded as a fail). Any rooms that are not bedrooms are therefore not assessed, hence the corresponding N/A values.

Room name	No. hours > 26°C 22:00-24:00	No. hours > 26°C 00:00-07:00	Total hours > 26°C	Criterion b check
B1-F7-SINGLE BEDROOM	7	1	8	Pass
B1-F7-LIVING/KITCHEN	N/A	N/A	N/A	N/A
B1-F7-BEDROOM 1	7	1	8	Pass
B1-F7-BEDROOM 2	7	1	8	Pass
B2-F4-DOUBLE BEDROOM	8	1	9	Pass
B2-F4-LIVING/KITCHEN	N/A	N/A	N/A	N/A
B6-F4-DOUBLE BEDROOM	12	4	16	Pass
B6-F4-SINGLE BEDROOM 1	9	2	11	Pass
B6-F4-SINGLE BEDROOM 2	9	1	10	Pass
B6-F5-LIVING/KITCHEN	N/A	N/A	N/A	N/A
B7-F5-DOUBLE BEDROOM 1	11	3	14	Pass
B7-F5-SINGLE ROOM	9	1	10	Pass
B7-F5-DOUBLE BEDROOM2	7	1	8	Pass
B7-F5-LIVING/KITCHEN	N/A	N/A	N/A	N/A

Appendix B – Assessed unit types

Wensum Edge Block Plan

Legal Notice and Disclaimer

This Overheating Assessment report (the "Report") has been prepared by CBRE Limited ("CBRE") exclusively for Serruys Property Co Ltd (the "Client") in accordance with the terms of engagement entered into between CBRE and the Client dated 17th April 2023 (the "Instruction"). The Report is confidential to the Client and any other Addressees named herein and the Client and the Addressees may not disclose the Report unless expressly permitted to do so under the instruction.

Where CBRE has expressly agreed (by way of a reliance letter) that persons other than the Client or the Addressees can reply upon the Report (a "Relying Party" or "Relying Parties") then CBRE shall have no greater liability to any Relying Party than it would have if such party had been named as a joint client under the Instruction.

CBRE's maximum aggregate liability to the Client, Addressees and to any Relying Parties howsoever arising under, in connection with or pursuant to this Report and/or the Instruction together, whether in contract, tort, negligence or otherwise shall not exceed £1 million (one million pounds).

Subject to the terms of the Instruction, CBRE shall not be liable for any indirect, special or consequential loss or damage howsoever caused, whether in contract, tort, negligence or otherwise, arising from or in connection with this Report. Nothing in this Report shall exclude liability which cannot be excluded by law.

If you are neither the Client, an Addressee nor a Relying Party then you are viewing this Report on a non-reliance basis and for informational purposes only. You may not rely on the Report for any purpose whatsoever and CBRE shall not be liable for any loss or damage you may suffer (whether direct, indirect or consequential) as a result of unauthorised use of or reliance on this Report. CBRE gives no undertaking to provide any additional information or correct any inaccuracies in the Report.

None of the information in this Report constitutes advice as to the merits of entering into any form of transaction.

If you do not understand this legal notice then it is recommended that you seek independent legal advice.

Appendix C - Non-feasible LZC technologies

Biomass boiler

Residential developments have a high hot water demand throughout the year. Therefore, there are concerns regarding the supply chain and the reliability of supply throughout the project life. The impact of frequent fuel deliveries on local traffic and noise should also be considered. There are also concerns within local authorities over air-quality issues associated with biomass boilers.

The issues outlined above, together with the fact that biomass boilers need very large fuel storages to reduce the frequency of deliveries, especially for this scale of development, means that we would not consider this option either appropriate or practical for this scheme.

Wind turbines

The urban setting of the development means that the wind speed may not be consistent and reliable to generate the expected energy. Previous studies on wind turbine performance in urban climate have shown that air turbulence in urban areas will usually result in lower energy production than expected.

Also, installation of wind turbines might not be acceptable in a dense residential urban environment due to noise issues and aesthetic impacts. We would, therefore, consider wind turbines inappropriate for the site.

Ground/Water to water heat pumps

The possibility of utilising a Ground Source Heat Pump has been considered for the scheme. With a closed loop borehole system, it would be possible to drop loops

and extract heat from the ground, which has a constant temperature throughout the year, typically above 5oC.

ASHPs are working with air temperatures that fluctuate between -5°C to 25°C for most of the year. This means there are times during the year when the ASHP will be more efficient than the GSHP, in particular during summer when heat pumps need to cover demand for domestic hot water, but when it gets much colder in winter, GSHPs will be more efficient. With regards to capital cost, GSHPs are more expensive to install and also rely on the use of energy to pump fluid around the distribution network.

Therefore, as a ground source system is considered to be more complex, technically risky and costly, an ASHP system is proposed instead for the scheme.

Water sourced heat pumps operate on the same principles, with a water source nearby the site acting as the heat medium, instead of the ground.

Solar hot water heating

Solar thermal hot water systems can work well on residential developments, in particular on houses. However, it is decided that the available space on the roof will be used for installation of PV panels that need less maintenance and can offset electricity use through on-site energy generation.

In addition, PVs are best coupled with the ASHPS proposed for heating, feeding heat pumps with the electricity they need to operate. In the case of solar water panels, these would compete against the ASHPs when it comes to hot water generation thus limiting their annual capacity.

Appendix D - SAP 10 worksheets & BRUKL

Property Reference	HT H ET			Issued on I	Date	6/06/2023			
Assessment Reference	06-After renewables	6-After renewables Prop Type Ref							
Property	NORWICH	IORWICH							
SAP Rating		82 B	DER	3.61	TE	FR	11 75		
Environmental	97 4	% DER < TER	69.28						
CO ₂ Emissions (t/vear)		0.35	DFEE	38.93 TFEE			40.73		
Compliance Check		See BREL	% DFEE < TFEE				4.42		
% DPER < TPER	30.29	DPER	43.02	TP	PER	61.71			
Assessor Details	Panagiotis Dalapas	As	ssessor ID	AZ85-0001					

SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE

1. Overall dwelling characteristics									
		Area (m2)	Stor	ey height (m)			Volume (m3)		
Ground floor		42.1700 (1b)	x	2.6000	(2b)	-	109.6420	(1b)	-
First floor		41.8200 (1c)	х	2.8000	(2c)	=	117.0960	(1c)	-
Second floor		31.1600 (1d)	х	3.0000	(2d)	=	93.4800	(1d)	-
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n) Dwelling volume	115.1500	(3a)+(3l	o)+(3c)	+(3d)+(3e)	(3n)) =	320.2180	(4) (5)	

2. Ventilation rate

												m3 per hour	
Number of open c Number of open f Number of chimme Number of flues Number of blocke Number of interm Number of passiv Number of fluele	himneys lues ys / flues attached to attached to d chimneys ittent extu e vents ss gas fire	attached t o solid fue o other hea ract fans	o closed fi 1 boiler ter	ire							0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 20 = 0 * 20 = 4 * 10 = 0 * 10 = 0 * 40 =	0.0000 0.0000 0.0000 0.0000 0.0000 40.0000 0.0000 0.0000 0.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	to chimney thod AP50 e sheltered	ys, flues a	nd fans ⊧	= (6a)+(6b)+	+(6c)+(6d)+(6e)+(6f)+(6	5g)+(7a)+(7t	o)+(7c) =		40.0000	Air chang / (5) =	ges per hour 0.1249 Yes Blower Door 5.0000 0.3749	(8) (17) (18) (19)
Shelter factor Infiltration rat	e adjusted	to include	shelter fa	actor					(20) = 1 - (21	[0.075 x) = (18) x	(19)] = (20) =	0.9250 0.3468	(20) (21)
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750 0.4422	Feb 5.0000 1.2500	Mar 4.9000 1.2250 0.4248	Apr 4.4000 1.1000 0.3815	May 4.3000 1.0750 0.3728	Jun 3.8000 0.9500 0.3295	Jul 3.8000 0.9500 0.3295	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750 0.3728	Nov 4.500 1.125 0.390	Dec 4.7000 1.1750 1.0,4075	(22) (22a)
Effective ac	0.5978	0.5940	0.5902	0.5728	0.5695	0.5543	0.5543	0.5515	0.5601	0.5695	0.576	0.5830	(25)

3. Heat losses and heat loss parameter	r						
Element	Gross m2	Openings m2	NetArea m2	U-value W/m2K	A x U W/K	K-value kJ/m2K	A x K kJ/K
Door Window (Uw = 1.20)			2.1200 12.4600	1.0000	2.1200 14.2672		(26) (27)
GF EXPOSED FLR OVER ENTRANCE	127 0000	14 5800	42.1700 1.6500 112.4200	0.1500 0.1500 0.1500	6.3255 0.2475 16.8630	75.0000 20.0000 110.0000	3162.7500 (28a) 33.0000 (28b) 12366 2000 (29a)
ASHLAR WALL UNDER EAVES	24.6000	1415000	24.6000	0.2000	4.9200	9.0000	221.4000 (29a)

elmhurst energy

Full SAP Calculation Printout

Heat capacity Gm = Sum(A x k) (28)(30) + (32) + (32a)(32e) = 22908. Thermal mass parameter (TMP = Cm / TFA) in k]/m2K 198. List of Thermal Bridges 198. KI Element Length Psi-value Total E2 Other lintels (including other steel lintels) 7.7700 0.6840 0.4196 E3 Sill 4.7400 0.4040 0.1896 E4 Jamb 20.3300 0.6380 0.7725 E5 Ground floor (normal) 20.3300 0.6380 0.7725 E1 Taves (insulation at rafter level) 8.2000 -0.6310 -0.2542 E13 Gable (insulation at rafter level) 11.6000 0.8910 1.8556 E13 Gable (insulation at rafter level) 11.6000 0.8910 1.8556	8299 9477	(34) (35)
E18 Party wall between dwellings 5.2000 0.0490 0.2548 P1 Party wall - foround floor 8.2000 0.6660 0.5412 P2 Party wall - Intermediate floor within a dwelling 16.4000 0.0000 0.0000 0.0000 P5 Party wall - Koof (insulation at rafter level) 8.2000 0.210 1.7302 R6 Flat celling 16.4000 -0.0300 -0.6336 0.6323 E17 Corner (inverted - internal area greater than external area) 13.4000 -0.0300 -0.3866 E16 Corner (normal) 3.3400 0.1080 -0.6000 0.3647 E21 Exposed floor (inverted) 3.3400 0.1090 0.3641 E24 Eaves (insulation at celling level - inverted) 2.0500 0.8370 0.879 Thermal bridges (Sum(L x-Psi) calculated using Appendix K) 9. 9. 9. Point Thermal bridges (Sum(L x-Psi) calculated using Appendix K) 9. (33) + (36) + (36) = 6.	0920 0000 4246	(36) (37)
Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De	ec	(20)
(36) B 31,059 02.7940 02.910 00.9249 00.1793 36.5709 36.5709 36.2790 35.1904 00.1793 00.6793 00.6783 01. Heat transfer coeff 124,5906 124.1895 123.7963 121.9495 121.6040 119.9955 119.9955 119.6976 120.6151 121.6040 122.3030 123.	0337	(39)
Average = Sum(39)m / 12 = 121. Jan Feb Mar Aor May Jun Jul Aug Seo Oct Nov De	9479 ec	
HLP 1.0820 1.0785 1.0751 1.0550 1.0560 1.0421 1.0421 1.0395 1.0475 1.0560 1.0621 1. HLP (average) 1.01 Days in mont 31 28 31 30 31 30 31 31 30 31 30 31 30	0685 0590 31	(40)
4. Water heating energy requirements (kWh/year) 4. Assumed occupancy 2. hot water usage for mixer showers 20. hot water usage for baths 71.6902 71.2993 Hot water usage for baths 20.2002 2.0002 2.0002	.8425 .5534	(42) (42a)
31.0333 30.5/24 29.9234 28.7267 27.8306 26.8370 26.3003 26.9448 27.6466 28.7097 29.9311 30. Hot water usage for other uses	9284	(420)
43.7396 42.1491 40.5585 38.9680 37.3775 35.7869 35.7869 37.3775 38.9680 40.5585 42.1491 43. Average daily hot water use (litres/day) 143.	7396 0892	(42c) (43)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De Daily hot water use	!C	
155.6362 152.3695 148.3591 142.1838 137.1969 131.8244 129.7028 133.6952 137.9139 143.6515 149.8342 155. Energy context (annual) Energy context (annual) Total = Sum(45)m = 2376.	2214 0392 6991	(44) (45)
36.9734 32.5458 34.2034 29.1964 27.7040 24.3140 23.5296 24.8314 25.5092 29.2217 32.0199 36.	4559	(46)
water storage loss: 300. Store volume Galaxie a) 1f manufacture factor is known (kWh/day): 2. Temperature factor from Table 2b 0. Enter (49) or (54) in (55) 1. Total storage loss 1.	0000 8600 5400 5444	(47) (48) (49) (55)
47.8764 43.2432 47.8764 46.3320 47.8764 46.3320 47.8764 46.3320 47.8764 46.3320 47.8764 46.3320 47.8764 46.3320 47.	8764	(56)
47.8764 43.2432 47.8764 46.3320 47.8764 47.876	8764	(57) (59)
CUMDI 1055 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.	0000	(61)
317.6284 281.2266 299.1613 263.4865 255.8321 230.9374 228.0930 236.6814 238.0956 265.9593 282.3103 314.	1780 0000	(62) (63a)
PV diverter -0.0000 -0	5500	(63h)

Output from w/h

FGHRS

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

Total per year (kWh/year) = Sum(64)m = 3214.3011 (64)

0.0000

0.0000 (63d)

elmhurst

<u>enera</u>

12Total per y	ear (kWh/ye	ar)										3214 (64)
Electric Show	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (64a)
Heat gains fr	om water he	ating, kWh/	/month	101	tai Energy u	sed by inst	antaneous e	electric sho	wer(s) (kwr	i/year) = Su	n(64a)m =	0.0000 (64a)
	138.8688	123.5468	132.7285	119.7938	118.3216	108.9713	109.0684	111.9539	111.6207	121.6859	126.0528	137.7216 (65)
5. Internal g	ains (see T	able 5 and	5a)									
Metabolic gai	ns (Table 5), Watts				_						
(66)m	Jan 142.1228	Feb 142.1228	Mar 142.1228	Apr 142.1228	May 142.1228	Jun 142.1228	Jul 142.1228	Aug 142.1228	Sep 142.1228	UCT 142.1228	NOV 142.1228	Dec 142.1228 (66)
Lighting gain	s (calculat	ed in Apper 174 1031	ndix L, equa 157 2545	162 4963	L9a), also	see Table 5	157 2545	157 2545	162 4963	157 2545	162 4963	157 2545 (67)
Appliances ga	ins (calcul	ated in App	pendix L, ec	uation L13	or L13a), a	lso see Tab	le 5	137.2343	102.4505	157.2545	102.4505	137.2545 (07)
Cooking gains	278.7575 (calculate	281.6501 d in Append	274.3607 dix L, equat	258.8426 ion L15 or	239.2538 L15a), also	220.8430 see Table	208.5435 5	205.6509	212.9402	228.4583	248.0472	266.4579 (68)
Dumps fors	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123 (69)
Losses e.g. e	vaporation	(negative \	values) (Tab	ole 5)	5.0000	0.0000	0.0000	0.0000	0.0000	5.0000	5.0000	5.0000 (70)
Water heating	-113.6982 gains (Tab	-113.6982 le 5)	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982 (71)
T-1-1	186.6517	183.8493	178.3985	166.3803	159.0344	151.3490	146.5973	150.4757	155.0287	163.5563	175.0733	185.1097 (72)
lotal interna	1 gains 691.3004	708.2394	678.6506	656.3560	624.1794	600.3251	578.0321	579.0179	596.1020	617.9059	654.2535	677.4589 (73)
6. Solar gain	s											
[Jan]			ļ	rea	Solar flux		g		FF	Acce	ss	Gains
				m2	Table 6a W/m2	Speci or	fic data Table 6b	Specific or Tab	data le 6c	fact Table	or 6d	W
North				700	10 6334		0 5000		7500	0.77	90	11 5222 (74)
South			8.2	900	46.7521		0.5000	0	.7500	0.77	80	100.7210 (78)
Solar gains	112.2441	186.9764	247.5431	297.5907	328.4419	324.8386	313.6224	290.1850	264.4893	204.1330	133.6040	96.6385 (83)
iotal gains	803.5445	895.2158	926.1937	953.9467	952.6213	925.1637	891.6545	869.2028	800.5913	822.0389	/8/.85/5	//4.09/3 (84)
7 Moon inton												
7. Mean inter	nai tempera	cure (neat)	ing season)									
Temperature d	uring heati actor for g	ng periods ains for li	in the livi	ng area fro ni1.m (see	om Table 9, ' Table 9a)	Th1 (C)						21.0000 (85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau alpha	51.0758 4.4051	51.2408 4.4161	51.4035 4.4269	52.1820 4.4788	52.3302 4.4887	53.0317 4.5354	53.0317 4.5354	53.1637 4.5442	52.7593 4.5173	52.3302 4.4887	52.0311 4.4687	51.7221 4.4481
util living a	rea	0.0920	0.0724	0.0449	0 0004	0 7250	0 5694	0 6010	0 0040	0.0441	0.0935	0.0020 (96)
	0.550/	0.9039	0.9/34	0.2448	0.0004	0.7559	0.0004	0.0018	0.0040	0.5441	0.7025	0.3320 (00)
MIT Th 2	19.8442 20.0156	19.9839 20.0184	20.1739 20.0212	20.4432 20.0344	20.6827 20.0369	20.8575 20.0484	20.9138 20.0484	20.9084 20.0506	20.8126 20.0440	20.5158 20.0369	20.1448 20.0319	19.8294 (87) 20.0267 (88)
util rest of	house	0.0700	0.0001	0.0205	0.0422	0.0504	0.4562	0 4015	0 7071	0.0244	0.0770	0.0000 (00)
MIT 2	18.6633	18.8428	19.0855	19.4312	19.7179	19.9100	19.9533	19.9525	19.8658	19.5257	19.0590	18.6531 (90)
Living area f MTT	raction 18.8561	19.0291	19.2632	19.5964	19.8754	20.0647	20.1101	20.1086	fLA = 20.0204	Living are 19.6873	a / (4) = 19.2363	0.1633 (91) 18.8451 (92)
Temperature a	djustment	1910291	1912092	1010004	1010704	2010047	2011101	2011000	2010204	1910079	1912909	0.0000
adjusted MII	18.8561	19.0291	19.2632	19.5964	19.8/54	20.0647	20.1101	20.1086	20.0204	19.6873	19.2363	18.8451 (93)
8. Space heat	ing require	ment										
	100	Ech	Man	Ann	May	7.02	77	A1:7	See	0c+	New	Dec
Utilisation	0.9844	0.9742	0.9588	мрг 0.9193	0.8348	0.6579	0.4639	0.4986	зер 0.7352	0.9155	0.9714	0.9866 (94)
Useful gains Ext temp.	790.9873 4.3000	872.1607 4.9000	888.0663 6.5000	876.9722 8.9000	795.2635	608.6504 14.6000	413.6756	433.4054	632.6967 14.1000	752.5502	765.3467	763.6929 (95)
Heat loss nat	e W	4.5500	0.5000	0.000	11.,000	1410000	10.0000	101-0000	1411000	10.0000	/ 12000	4.2000 (50)
11eac 1033 1ac		4 7 5 4 6 6 7 7	4500 007	4004 40.55	004 4455	CEE	101 1077	443 000 -	B44 00.17	4405 0557	4 404 207 -	1001 0100 /
Space heating	1813.5556 kWh	1754.6892	1580.0336	1304.4248	994.1630	655.7382	421.1999	443.9086	714.0912	1105.0572	1484.3004	1801.8439 (97)
Space heating	1813.5556 kWh 760.7908	1754.6892 593.0592	1580.0336 514.8237	1304.4248 307.7659	994.1630 147.9813	655.7382 0.0000	421.1999 0.0000	443.9086 0.0000	714.0912 0.0000	1105.0572 262.2652	1484.3004 517.6467	1801.8439 (97) 772.3844 (98a)

Splat heating kuh Solar heating kuh 8.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Solar heating contribution - total per year (kuh/year) 0.0000 (98b) 0.0000 Jozan Healing Controloción - Golar per year (kwi/year) 760.7908 593.6052 514.8237 307.7659 147.9813 0.0000 Space healing requirement after solar contribution - total per year (kwh/year) 0.0000 262.2652 517.6467 772.3844 (98c) 3876.7170 0.0000 0.0000 Space heating per m2 (98c) / (4) = 33.6667 (99)

Full SAP Calculation Printout

9a. Energy requirements - Individual heating systems, including micro-CHP

Fraction of space heat from secondary/supplement: Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of main space heating system 2 (in %) Efficiency of secondary/supplementary heating sys	ary system (Table 11 stem, %	.)						0.0000 1.0000 170.0000 0.0000 0.0000	(201) (202) (206) (207) (208)
Jan Feb Mar	Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
760.7908 593.0592 514.8237 3 Space heating efficiency (main heating system 1)	307.7659 147.9813	0.0000	0.0000	0.0000	0.0000	262.2652	517.6467	772.3844	(98)
170.0000 170.0000 170.0000 Space heating fuel (main heating system 1)	170.0000 170.0000	0.0000	0.0000	0.0000	0.0000	170.0000	170.0000	170.0000	(210)
447.5240 348.8583 302.8374 3	181.0388 87.0478	0.0000	0.0000	0.0000	0.0000	154.2736	304.4980	454.3438	(211)
0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
0.0000 0.0000 0.0000 Space heating fuel (secondary)	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement									
317.6284 281.2266 299.1613 : Efficiency of water heater	263.4865 255.8321	230.9374	228.0030	236.6814	238.9056	265.9503	282.3103	314.1780 170.0000	(64) (216)
(217)m 170.0000 170.0000 170.0000 Fuel for water heating, kWh/month	170.0000 170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	(217)
186.8402 165.4274 175.9772 Space cooling fuel requirement	154.9921 150.4895	135.8455	134.1194	139.2243	140.5327	156.4414	166.0649	184.8106	(219)
(221)m 0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221)
Lighting 32.6744 26.2126 23.6015	17.2915 13.3564	10.9123	12.1842	15.8375	20.5713	26.9907	30.4859	33.5825	(232)
(233a)m -43.8003 -65.9997 -100.3017 -	116.4487 -125.5868	-111.1666	-109.7462	-102.0461	-88.1794	-75.3271	-49.1495	-37.4201	(233a)
(234a)m 0.0000 0.0000 0.0000 Electricity generated by hydro-electric generato	0.0000 0.0000 rs (Appendix M) (neg	0.0000 ative quant:	0.0000 itv)	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
(235a)m 0.0000 0.0000 0.0000 Electricity used or net electricity generated by	0.0000 0.0000 micro-CHP (Appendix	0.0000 N) (negati	0.0000 ve if net g	0.0000 eneration)	0.0000	0.0000	0.0000	0.0000	(235a)
(235c)m 0.0000 0.0000 0.0000 Electricity generated by PVs (Appendix M) (negat	0.0000 0.0000 ive quantity)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
(233b)m -11.5903 -25.9667 -55.0431 Electricity generated by wind turbines (Appendix	-89.8016 -127.4711 M) (negative quanti	-136.8973	-135.3501	-113.2740	-81.9264	-41.8958	-16.4612	-8.9927	(233b)
(234b)m 0.0000 0.0000 0.0000 Electricity generated by hydro-electric generato	0.0000 0.0000 rs (Appendix M) (neg	0.0000	0.0000 itv)	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
(235b)m 0.0000 0.0000 0.0000 Electricity used or net electricity generated by	0.0000 0.0000 micro-CHP (Appendix	0.0000 N) (negativ	0.0000	0.0000 eneration)	0.0000	0.0000	0.0000	0.0000	(235b)
(235d)m 0.0000 0.0000 0.0000 Annual totals kWh/year	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Space heating fuel - main system 1 Space heating fuel - main system 2								2280.4218 0.0000	(211) (213)
Space heating fuel - secondary								0.0000	(215)
Water heating fuel used								1890.7653	(219)
Space cooling tuel								0.0000	(221)
Electricity for pumps and fans: Total electricity for the above, kWh/year								0.0000	(231)
Electricity for lighting (calculated in Appendix	L)							263.7009	(232)
Energy saving/generation technologies (Appendice: PV generation	s M ,N and Q)							-1869.8425	(233)
Wind generation Hydro-electric generation (Appendix N)								0.0000	(234) (235a)
Electricity generated - Micro CHP (Appendix N) Appendix Q - special features								0.0000	(235)
Energy saved or generated								-0.0000	(236)
Total delivered energy for all uses								2565.0455	(238)
12a. Carbon dioxide emissions - Individual heati	ng systems including	micro-CHP							
				Enongy	Emice	ion factor		Emissions	
form booking and such a				kWh/year	EIIIISS	kg CO2/kWh	k	g CO2/year	(261)
Total CO2 associated with community systems				1900 7652		0.1550		0.0000	(373)
Space and water heating				1070./053		0.1408		619.7743	(265)
Energy for lighting				263.7009		0.1443		38.0602	(268)
Energy saving/generation technologies									
PV UNIT ELECTRICITY USEd in dwelling PV Unit electricity exported				-1025.1723		0.1344 0.1230		-137.7496 -103.8662	
Total Total CO2, kg/year								-241.6158 416.2187	(269) (272)
EPC Dwelling Carbon Dioxide Emission Rate (DER)								3,6100	(273)

Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER)

elmhurst energy

SAP 10 Online 2.7.1

elmhurst energy

13a. Primary energy - Individual heating systems including micro-CHP							
Space heating - main system 1 Total (02 associated with community systems	Energy P kWh/year 2280.4218	rimary energy kg	factor 202/kWh 1.5739		Prima	kWh/year 3589.1462	(275)
Water heating (other fuel) Space and water heating	1890.7653		1.5207			2875.3628	(278)
Pumps, fans and electric keep-hot Energy for lighting	0.0000 263.7009		0.0000 1.5338			0.0000	(281) (282)
Energy saving/generation technologies	1005 1300						
PV Unit electricity used in dwelling PV Unit electricity exported Total	-1025.1723 -844.6703		0.4512		-	-381.1008	(283)
Total Primary energy kWh/year Dwelling Primary energy Rate (DPER)						4953.6035 43.0200	(286) (287)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022)							
CALCULATION OF TARGET EMISSIONS							
1. Overall dwelling characteristics							
	Area (m2)	Storey	height (m)			Volume (m3)	
Ground floor First floor	42.1700 (41.8200 (1b) x 1c) x	2.6000	(2b) (2c)	-	109.6420 117.0960	(1b) (1c)
Second floor Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n) 115.1500	31.1600 (1d) x	3.0000	(2d)	-	93.4800	(1d) (4)
uncling volume	(58)+(30)+(30)+(u)+(Je)	(511)	-	520.2100	(3)
2. Ventilation rate							
					m3	} per hour	
Number of open chimneys Number of open flues				0 * 80 0 * 20		0.0000	(6a) (6b)
Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler				0 * 10 0 * 20	· = / =	0.0000 0.0000	(6c) (6d)
Number of flues attached to other heater Number of blocked chimneys				0 * 35 0 * 20	· =	0.0000	(6e) (6f)
Number of intermittent extract fans Number of passive vents Number of flueless gas fires				4 * 10 0 * 10 0 * 40	· = · =	40.0000	(7a) (7b)
			40,0000	Air ch	anges	per hour	(0)
Pressure test	/a)+(/b)+(/c) =		40.0000	/ (5)	= 01	0.1249 Yes	(8)
Measured/design AP50 Infiltration rate					81	5.0000 0.3749	(17) (18)
Number of sides sheltered						1	(19)
Shelter factor	(20) = 1 -	(0.075 x	(19)]	-	0.9250	(20)

 $(20) = 1 - [0.075 \times (19)] = (21) = (18) \times (20) =$ 0.3468 (21) Infiltration rate adjusted to include shelter factor Apr 4.4000 May 4.3000 Aug 3.7000 Sep 4.0000 0ct Nov Tan Feb Mar Jun 101 Dec 4.7000 (22) Wind speed 5.1000 5.0000 4.9000 3.8000 3.8000 4.3000 4.5000 Wind factor Adj infilt rate 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 0.9500 0.9250 1.0000 1.0750 1.1250 1.1750 (22a) 0.4422 0.4335 0.5940 0.4075 (22b) 0.5830 (25) 0.3815 0.5728 0.3728 0.5695 0.3728 0.4248 0.3295 0.3295 0.3208 0.3468 0.3901 Effective ac 0.5978 0.5902 0.5543 0.5515 0.5761 0.5543 0.5601 0.5695

3. Heat losses and heat loss parameter							
Element	Gross	Openings	NetArea	U-value	AxU	K-value	A x K
	m2	m2	m2	W/m2K	W/K	kJ/m2K	kJ/K
TER Opaque door			2.1200	1.0000	2.1200		(26)
TER Opening Type (Uw = 1.20)			12.4600	1.1450	14.2672		(27)
GF			42.1700	0.1300	5.4821		(28a)
EXPOSED FLR OVER ENTRANCE			1.6500	0.1300	0.2145		(28b)
Wall1	127.0000	14.5800	112.4200	0.1800	20.2356		(29a)
ASHLAR WALL UNDER EAVES	24.6000		24.6000	0.1800	4.4280		(29a)
Plane	8.2000		8.2000	0.1100	0.9020		(30)

Full SAP Calculation Printout

Slope CEILING UNDER I BAY ROOF Total net area Fabric heat lo: Party Wall 1	EAVES of externa ss, W/K = S	l elements um (A x U)	Aum(A, m2)	32.4700 10.6600 2.0000		32 10 2 248	2.4700 0.6600 2.0000 3.7500 (26)(0.1100 0.1100 0.1100 (30) + (32)	3.57 1.17 0.22 = 52.61	17 26 00 37		(30) (30) (30) (31) (33)
Party wall 1						****	.2000	0.0000	0.00	00		(32)
Thermal mass p List of Therma K1 Ele E2 Oth E3 Sill E4 Jam E5 Grov E6 Int/ E11 Ga E13 Go E18 Da P1 Par P2 Par P5 Par R6 Fla E17 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E17 Co E17 Co E16 Co E16 Co E16 Co E17 Co E17 Co E17 Co E16 Co E16 Co E17 Co E17 Co E17 Co E16 Co E17 Co E16 Co E16 Co E17 Co E16 Co E17 Co E16 Co E16 Co E16 Co E17 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E16 Co E17 Co E16	arameter (T 1 Bridges ment er lintels 1 b und floor (ermediate f ves (insula ble (insula ble (insula ble (insula ty wall be ty wall - C ty wall - C ty wall - R ty wall - R ty wall - R ty wall - R ty wall - R to compare the second ref (insula rner (inner rner (norma posed floor)	<pre>MP = Cm / ' (including normal) loor within tion at ra- tion at ca: tion at ra- 1) tween dwel iround floo ntermediat (oof (insul 'ted - inte: 1) '(normal)</pre>	TFA) in kJ/m other stee: n a dwellin, fter level) iling level fter level) lings r e floor witt ation at ra rnal area g	m2K l lintels) g) hin a dwell: fter level) reater than	ing external a	rea)		L 7 4 27 200 37 8 2 11 18 8 16 8 8 16 6 13 6 3 3	ength 7700 7000 3300 0100 2000 2000 2000 2000 2000 2	Psi-value 0.8500 0.5500 0.6500 0.04000 0.04000 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0900 0.0900 0.3200	Tot 0.35 0.23 1.33 3.25 0.00 0.33 0.12 0.53 0.65 0.66 0.66 0.66 0.66 0.66 0.120 0.54 0.120	198.9477 (35) al 85 77 59 60 60 60 60 60 60 60 60 60 60 60 60 60
E21 Ex	posed floor	(inverted)					3	.3400	0.3200	1.06	88
E15 F1	ves (insula	n parapet tion at ce	iling level	- inverted)			4	.0500	0.2400	0.49	20
Thermal bridge	s (Sum(L x	Psi) calcu	lated using	Appendix K)						(36a) =	15.1249 (36) 0 0000
Total fabric h	eat loss								(33) + (36)	+ (36a) =	67.7386 (37)
Ventilation he	at loss cal	culated mo	nthly (38)m	= 0.33 x (2	25)m x (5)							
(28) m	Jan	Feb	Mar	Apr 60 E240	May 60,1702	Jun	Jul	Aug	Sep	0ct	Nov	Dec
Heat transfer	coeff	02.7040	02.3710	00.3249	00.1/95	56.5705	50.5705	56.2/50	35.1504	00.1/95	00.0705	01.0051 (38)
Average = Sum(130.9045 39)m / 12 =	130.5034	130.1102	128.2634	127.9179	126.3094	126.3094	126.0116	126.9290	127.9179	128.6169	129.3477 (39) 128.2618
	7	r		4		2	77	A	6	0-+		Dee
HLP	1.1368	1.1333	Mar 1.1299	Apr 1.1139	May 1.1109	1.0969	1.0969	Aug 1.0943	Sep 1.1023	1.1109	1.1170	1.1233 (40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.1139
4. Water heatin	ng energy r	equirement	s (kWh/year)								2 8425 (42)
Hot water usage	e for mixer	showers	69 2242	66 2125	63 9900	61 5115	60 1026	61 6648	63 3772	66 0384	69 1147	71 6031 (42a)
Hot water usage	e for baths	30 5724	20 0224	28 7267	27 9306	26 9370	26 3003	26 9449	27 6466	28 7007	20 0211	30 0284 (426)
Hot water usage	e for other	uses	20.0204	20.7207	27.0500	20.0570	20.5005	20.5440	27.0400	20.7057	20.0011	50.5284 (420)
Average daily	43.7396 hot water u	42.1491 se (litres,	40.5585 /day)	38.9680	37.3775	35.7869	35.7869	37.3775	38.9680	40.5585	42.1491	43.7396 (42c) 134.8055 (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sen	0ct	Nov	Dec
Daily hot wate	r use	142 5107	100 7061	122,0072	100 1001	104 1054	100 1000	105 0071	120 0017	125 2067	1 41 1040	146 2710 (44)
Energy conte Energy content	232.2599 (annual)	204.3702	214.7231	183.3123	173.9255	152.6390	147.7781	155.9983	160.2928	183.6099 Total = 9	201.1580 Sum(45)m =	229.0251 (45) 2239.0922
Distribution 1	oss (46)m 34.8390	= 0.15 x (4 30.6555	45)m 32.2085	27.4968	26.0888	22.8958	22.1667	23.3997	24.0439	27.5415	30.1737	34.3538 (46)
Water storage	loss:											300 0000 (47)
a) If manufac Temperature Enter (49) or	turer decla factor from (54) in (55	red loss fa Table 2b	actor is kn	own (kWh/da	ay):							2.1127 (48) 0.5400 (49) 1.1409 (55)
lotal storage	1055 35.3664	31.9439	35.3664	34.2256	35.3664	34.2256	35.3664	35.3664	34.2256	35.3664	34.2256	35.3664 (56)
If cylinder co	ntains dedi	cated sola	r storage	34 2256	35 3664	34 2256	35 3664	35 3664	34 2256	35 3664	34 2256	35 3664 (57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624 (59)
Combi loss Total heat req	0.0000 uired for w	0.0000 ater heati	0.0000 ng calculat	0.0000 ed for each	0.0000 month	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (61)
LILIUD C	290.8887	257.3252	273.3519	240.0499	232.5543	209.3765	206.4069	214.6271	217.0304	242.2387	257.8956	287.6539 (62)
PV diverter	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000 (63b)
Solar input FGHRS	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (63c) 0.0000 (63d)
Output from w/	h	220 2525	242 000		200 070	100 001	107	104 505	100 000		220 107	255 4025 (556)
	258.0289	228.2637	242.9204	214.8514	209.0702	189.2810	187.5706	194.5966 Total p	196.2388 er year (kw	21/./277 h/year) = 9	230.1276 Sum(64)m =	255.4026 (64) 2624.0794 (64)
12Total per yea	ar (kWh/yea r(s)	ir)										2624 (64)
CICCUIC SHOWE	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (64a)
Heat gains fro	m water hea	ting, kWh/	month	Tota	al Energy u	sed by inst	antaneous e	electric sho	wer(s) (kWh	/year) = Su	um(64a)m =	0.0000 (64a)
		110 2171	110 2005	106 2414	104 7333	06 1435	06 0202	09 7725	00 6074	107 0522	112 2751	132 0520 (65)

5. Internal gains (see Table 5 and 5a)

Metabolic gains	(Table 5)	, Watts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(66)m :	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228 (66)
Lighting gains ((calculated	d in Append	ix L, equa	tion L9 or	L9a), also :	see Table 5						
1	159.6437	176.7484	159.6437	164.9652	159.6437	164.9652	159.6437	159.6437	164.9652	159.6437	164.9652	159.6437 (67)
Appliances gains	s (calculat	ted in Appe	ndix L, eq	uation L13	or L13a), a	lso see Tab	le 5					
2	278.7575	281.6501	274.3607	258.8426	239.2538	220.8430	208.5435	205.6509	212.9402	228.4583	248.0472	266.4579 (68)
Cooking gains (calculated	in Appendi	x L, equat:	ion L15 or	L15a), also	see Table	5					
	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123 (69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	0.0000	0.0000	0.0000	0.0000	3.0000	3.0000	3.0000 (70)
Losses e.g. evap	poration (r	negative va	lues) (Tab	le 5)								
-3	113.6982 ·	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982 (71)
Water heating ga	ains (Table	e 5)										
1	166.8407	164.1624	159.0033	147.6964	140.7705	133.5313	129.0851	132.7587	137.0658	145.0986	155.9376	165.3950 (72)
Total internal g	gains											
6	673.8787	691.1977	661.6446	640.1410	608.3048	584.9763	562.9091	563.6901	580.6080	601.8374	637.5868	660.1335 (73)

6. Solar gair	15												
[Jan]		Area m2		Solar flux Table 6a Spec W/m2 or		g fic data Table 6b	FF Specific data or Table 6c		Access factor Table 6d		Gains W		
North		4.1	700	10.6334		0.6300	0	.7000	0.77	00	13.5513	(74	
South		8.2	900	46.7521		0.6300	0	.7000	0.77	00	118.4478	(78	
Solar gains	131.9991	219.8842	291.1107	349.9667	386.2477	382.0102	368.8199	341.2575	311.0394	240.0604	157.1183	113.6468	(83
Total gains	805.8778	911.0819	952.7553	990.1076	994.5525	966.9865	931.7290	904.9477	891.6474	841.8978	794.7051	773.7803	(84

7. Mean intern	al temperat	ure (heatin	g season)									
Temperature du	ring heatin	ng periods i	n the livir	ng area from	Table 9, T	'h1 (C)						21,0000 (85)
Utilisation fa	ctor for ga	ins for liv	ing area, r	i1.m (see T	able 9a)	(-)						
	Jan	Feb	Mar	Ann	May	Jun	101	Διισ	Sen	Oct	Nov	Dec
tau	49 6122	49 7617	18 0000	10 6132	49 7472	50 3907	50 3907	50 1009	50 1349	49 7472	10 1760	40 1074
alaha	4 2409	4 2509	4 2696	4 3075	4 3165	4 3597	4 3597	4 3667	4 3423	4 3165	4 2085	4 2709
util living on	4.2400	4.2500	4.2000	4.5075	4.5105	4.5567	4.5507	4.5007	4.5425	4.5105	4.2505	4.2750
util living an	ea											
	0.9908	0.9836	0.9723	0.9425	0.8767	0.7342	0.5695	0.6043	0.8055	0.9441	0.9827	0.9922 (86)
MTT	19.4551	19.6574	19,9293	20.3076	20.6443	20.8895	20.9717	20.9631	20.8232	20.4004	19.8742	19,4308 (87)
Th 2	19,9709	19,9737	19,9765	19,9895	19,9920	20.0034	20.0034	20.0055	19,9990	19,9920	19,9870	19,9819 (88)
util rest of h	ouse											()
	0.9884	0.9793	0.9646	0.9252	0.8371	0.6520	0.4527	0.4894	0.7358	0.9241	0.9775	0.9902 (89)
MIT 2	18.1781	18.4368	18.7827	19.2626	19.6641	19.9284	19.9917	19.9890	19.8656	19.3836	18.7234	18.1547 (90)
Living area fr	action								fLA =	Living area	a / (4) =	0.1633 (91)
MIT	18.3866	18.6361	18.9699	19.4332	19.8242	20.0853	20.1517	20.1480	20.0219	19.5496	18.9113	18.3631 (92)
Temperature ad	ljustment											0.0000
adjusted MIT	18.3866	18.6361	18.9699	19.4332	19.8242	20.0853	20.1517	20.1480	20.0219	19.5496	18.9113	18.3631 (93)

8. Space heat	ing require	ment											
Utilisation	Jan 0,9830	Feb 0.9715	Mar 0.9545	Apr 0.9133	May 0.8293	Jun 0.6594	Jul 0.4710	Aug 0,5069	Sep 0.7377	Oct 0.9128	Nov 0,9696	Dec 0.9854 (94)	
Useful gains	792.1396	885.1104	909.4134	904.2762	824.7801	637.6690	438.8017	458.6790	657.7303	768.4482	770.5325	762.4839 (95)	
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (96)	
Heat loss rate	e W												
	1843.9997	1792.6059	1622.4572	1351.0235	1039.2258	692.8465	448.6156	472.2931	751.6665	1144.8141	1519.1268	1831.9605 (97)	
Space heating	kWh												
	782.5839	609.8370	530.5046	321.6581	159.5476	0.0000	0.0000	0.0000	0.0000	280.0163	538.9879	795.6906 (98a	ı)
Space heating	requirement	t - total p	er year (kw	lh/year)								4018.8261	
Solar heating	kWh												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (98b))
Solar heating	contributio	on - total	per year (k	Wh/year)								0.0000	
Space heating	kWh												
	782.5839	609.8370	530.5046	321.6581	159.5476	0.0000	0.0000	0.0000	0.0000	280.0163	538.9879	795.6906 (98c	:)
Space heating	requirement	t after sol	ar contribu	tion - tota	l per year	(kWh/year)						4018.8261	
Space heating	per m2									(980) / (4) =	34.9008 (99)	

9a. Energy requirements - Individual heating systems, including micro-CHP		
Fraction of space heat from secondary/supplementary system (Table 11) 0.	.0000	(201)
Fraction of space heat from main system(s) 1.	.0000	(202)
Efficiency of main space heating system 1 (in %) 92.	.3000	(206)
Efficiency of main space heating system 2 (in %) 0.	.0000	(207)
Efficiency of secondary/supplementary heating system, %	.0000	(208)

Full SAP Calculation Printout

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement	609 8370	530 5046	321 6581	159 5476	0 0000	0 0000	0 0000	A AAAA	280 0163	538 9879	795 6906	(98)
Space heating efficiency ((main heati	ng system :	1)	02 2000	0.0000	0.0000	0.0000	0.0000	02.2000	02 2000		(210)
Space heating fuel (main h	92.3000 neating sys	92.3000 tem)	92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	(210)
847.8699 Space heating efficiency (660.7118 main heati	574.7612 .ng system 2	348.4919 2)	172.8577	0.0000	0.0000	0.0000	0.0000	303.3762	583.9523	862.0700	(211)
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Space heating fuel (second 0.0000	1ary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating												
Water heating requirement	228 2627	242 0204	214 9514	200 0702	100 2010	107 5706	104 5066	106 2299	217 7277	220 1276	255 4026	(64)
Efficiency of water heater	228.2037	242.9204	214.0314	209.0702	109.2010	187.5700	194.3900	190.2300	217.7277	250.1276	79.8000	(216)
(217)m 86.3842 Fuel for water heating, kw	86.1536 Wh/month	85.7621	84.9627	83.4612	79.8000	79.8000	79.8000	79.8000	84.6251	85.9012	86.4314	(217)
298.6990 Snace cooling fuel require	264.9497	283.2493	252.8774	250.4997	237.1943	235.0509	243.8554	245.9133	257.2850	267.8979	295.4975	(219)
(221)m 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221)
Pumps and Fa 7.3041 Lighting 33.1708	6.5973 26.6109	7.3041 23.9601	7.0685	7.3041 13.5594	7.0685	7.3041 12.3693	7.3041 16.0781	7.0685 20.8839	7.3041 27.4008	7.0685	7.3041 34.0927	(231) (232)
Electricity generated by F (233a)m -40 8837	Vs (Append	lix M) (nega	ative quanti	ity) -105 1363	-98 4001	-97 1556	-91 2786	-81 0470	-67 2669	-45 1988	-35 2579	(233a)
Electricity generated by w	vind turbin	es (Append:	ix M) (negat	tive quanti	ty)							()
Electricity generated by h	ydro-elect	ric generat	tors (Append	0.0000 dix M) (neg	ative quant:	0.0000 ity)	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
(235a)m 0.0000 Electricity used or net el	0.0000 Lectricity	0.0000 generated b	0.0000 by micro-CHF	0.0000 Appendix	0.0000 N) (negativ	0.0000 ve if net g	0.0000 eneration)	0.0000	0.0000	0.0000	0.0000	(235a)
(235c)m 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
(233b)m -20.8615	-44.1410	-88.2320	-133.2610	-176.9533	-178.1226	-176.0591	-148.7438	-108.5739	-63.4043	-27.9390	-16.4796	(233b)
Electricity generated by w (234b)m 0.0000	vind turbin 0.0000	es (Append: 0.0000	ix M) (negat 0.0000	tive quanti 0.0000	ty) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
Electricity generated by h	nydro-elect	ric generat	tors (Append	dix M) (neg a aaaa	ative quant: A AAAA	ity) A AAAA	0 0000	0 0000	0 0000	0 0000	0 0000	(235h)
Electricity used or net el	lectricity	generated I	by micro-CHF	<pre>P (Appendix</pre>	N) (negati	ve if net g	eneration)	0.0000	0.0000	0.0000	0.0000	(2550)
(235d)m 0.0000 Annual totals kWh/year	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Space heating fuel - main Space heating fuel - main	system 1										4354.0911	(211) (213)
Space heating fuel - secon	ndary										0.0000	(215)
Water heating fuel used											3132.9693	(219)
Space cooling fuel											0.0000	(221)
Electricity for pumps and Total electricity for the	fans: above. kWh	/vear									86.0000	(231)
Electricity for lighting (calculated	in Append:	ix L)								267.7074	(232)
Energy saving/generation t	echnologie:	s (Appendi	ces M ,N and	d Q)								
PV generation Wind generation											-2084.3578 0.0000	(233) (234)
Hydro-electric generation	(Appendix	N)									0.0000	(235a)
Appendix Q - special featu	ires	openuix N)									0.0000	(225)
Energy saved or generated Energy used											-0.0000 0.0000	(236) (237)
Total delivered energy for	all uses										5756.4100	(238)

12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Emission factor Energy Emissions Emissions kg C02/year 914.3591 (261) 0.0000 (373) 657.9236 (264) 1572.2827 (265) 11.9293 (267) 38.6385 (268) kWh/year 4354.0911 kg CO2/kWh Space heating - main system 1 Total CO2 associated with community systems 0.2100 Water heating (other fuel) Space and water heating 3132.9693 0 2100 Pumps, fans and electric keep-hot Energy for lighting 86.0000 267.7074 0.1387 0.1443 Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -121.1219 -148.7049 -269.8267 (269) 1353.0237 (272) -901 5867 0.1343 -1182.7712 0.1257 Total Total CO2, kg/year

,	0,	0,	•				
				Energy Primary ene kWh/vear	ergy factor kg CO2/kWh	Primary energy kWh/year	
Space heating -	main system 1			4354.0911	1.1300	4920.1229	(275)
Total CO2 assoc Water heating (iated with community sy other fuel)	stems		3132.9693	1.1300	0.0000 3540.2553	(473) (278)

Page 7 of 15

11.7500 (273)

Space and water heating Pumps, fans and electric keep-hot Energy for lighting	86.0000 267.7074	1.5128 1.5338	8460.3782 (279) 130.1008 (281) 410.6186 (282)
Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy KWh/year Target Primary Energy Rate (TPER)	-901.5867 -1182.7712	1.4965 0.4615	-1349.2206 -545.8389 -1895.0595 (283) 7106.0381 (286) 61.7100 (287)
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 202 CALCULATION OF FABRIC ENERGY EFFICIENCY	2)		
1. Overall dwelling characteristics			
Ground floor First floor Second floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	Area (m2) 42.1700 (1 41.8200 (1 31.1600 (1 00 (3a)	Storey height (m) b) x 2.6000 (2b) = c) x 2.8000 (2c) = d) x 3.0000 (2d) = +(3b)+(3c)+(3d)+(3e)(3n) =	Volume (m3) 109.6420 (1b) 117.0960 (1c) 93.4800 (1d) (4) 320.2180 (5)
2. Ventilation rate			
Number of open chimneys Number of chimneys / flues attached to closed fire Number of chimneys / flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of plueless gas fires		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	m3 per hour 0.0000 (6a) 0.0000 (6b) 0.0000 (6c) 0.0000 (6d) 0.0000 (6f) 40.0000 (7a) 0.0000 (7c)
Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+ Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered	(6f)+(6g)+(7a)+(7b)+(7c) =	Air chan 40.0000 / (5) =	ges per hour 0.1249 (8) Yes Blower Door 5.0000 (17) 0.3749 (18) 1 (19)
Shelter factor Infiltration rate adjusted to include shelter factor	(2	0) = 1 - [0.075 x (19)] = (21) = (18) x (20) =	0.9250 (20) 0.3468 (21)
Jan Feb Mar Apr May Ju Wind speed 5.1000 5.0000 4.9000 4.4000 4.3000 3. Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.	n Jul Aug 8000 3.8000 3.7000 9500 0.9500 0.9250	Sep Oct Nov 4.0000 4.3000 4.500 1.0000 1.0750 1.125	Dec 0 4.7000 (22) 0 1.1750 (22a)
If exhaust air heat pump using Appendix N, (23b) 9.3215 9.3728 9. If exhaust air heat pump using Appendix N, (23b) 9.233) X Fmv (equation (15 balanced with heat recovery: efficiency in % allowing for in-use factor Effective ac 0.5978 0.5940 0.5902 0.5728 0.5695 0.	3295 0.3295 0.3208 NS)), otherwise (23b) = (23a) (from Table 4h) = 5543 0.5543 0.5515	0.3468 0.3728 0.390 0.5601 0.5695 0.576	1 0.4075 (22b) 0.0000 (23b) 0.0000 (23c) 1 0.5830 (25)
3. Heat losses and heat loss parameter			
Element Gross m2 Openings m2 Door m2 m2 Window (Uw = 1.20) GF 5 5 5 EXPOSED FLR OVER ENTRANCE Walling 14.5800 ASHLAR WALL UNDER EAVES 24.6000 14.5800 Slope 32.4700 2 CETLING UNDER EAVES 10.6600 2.0000 Dotal net area of external elements Aum(A, m2) Fabric heat loss, W/K = Sum (A x U)	NetArea U-value m2 W/m2X 2.1200 1.0000 12.4600 1.1450 42.1700 0.1500 112.4200 0.1500 24.6000 0.1500 24.6000 0.1600 32.4700 0.1500 10.6600 0.1500 24.7000 0.1500 240000 0.1500 240000 0.1500 240.7000 0.1500 240.7000 1.1500	A x U K-value W/K k1/m2K 2.1200 6.3255 75.0000 0.2475 20.0000 4.9200 9.0000 0.8200 9.0000 0.8200 9.0000 0.8200 9.0000 0.3000 9.0000 0.3000 9.0000 52.3327	A x K kJ/K (25) (27) 3162.7500 (28b) 12366.2000 (28b) 12366.2000 (29a) 221.4000 (29a) 222.2300 (30) 95.9400 (30) 18.0000 (30) (31) (33)

elmhurst energy

Full SAP Calculation Printout

Party Wall 1 Studwall partitions Internal Floor 1 Internal Floor 2 Internal Ceiling 1 Internal Ceiling 2			44. 180. 40. 31. 40. 31.	2800 0000 1700 1600 1700 1600	0.0000	0.000	300 7 1 1	70.0000 9.0000 18.0000 18.0000 9.0000 9.0000	3099.5999 (3 1620.0000 (3 723.0600 (3 560.8800 (3 361.5300 (3 280.4400 (3	32) 32c) 32d) 32d) 32e) 32e)
<pre>Heat capacity Cm = Sum(A x k) Thermal mass parameter (TMP = Cm / TFA) in kJ/m2 List of Thermal Bridges K1 Element E2 Other lintels (including other steel E3 Sill E4 Jamb E5 Ground floor (normal) E6 Intermediate floor within a dwelling E11 Eaves (insulation at rafter level) E13 Gable (insulation at rafter level) E13 Gable (insulation at rafter level) E13 Gable (insulation at rafter level) E14 Gable (insulation at rafter level) E15 Party wall between dwellings P1 Party wall - Ground floor P2 Party wall - Ground floor P2 Party wall - Intermediate floor withi P5 Farty wall - Roof (insulation at rafter E16 Corner (normal) E16 Corner (normal) E17 Corner (inverted - internal area gree E16 Corner (normal) E3 Exposed floor (inverted) E14 Exposed floor is parpet E14 Exposed floor (inverted) E14 Exposed floor (inverted)</pre>	K lintels) n a dwellin er level) ater than e inverted) ppendix K)	g xternal ar	rea)		(28) 16 17 17 17 18 16 16 13 13 13 13 13 14 2. 13 14 14 15 15 15 15 15 15 15 15 15 15	.(30) + (3: ngth 1 7700 7000 7400 3300 3300 3300 3300 3000 3000 3000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 3400 3500 (3)	2) + (32a). 251-value 0.6544 0.6409 0.62380 0.62380 0.62380 0.62380 0.62380 0.62380 0.62400 0.62400 0.64390 0.64390 0.62390 0.62390 0.62390 0.6370 0.10800 0.10900 0.10900 0.10800 0.10900 0.108000 0.108000 0.108000 0.1080000000000000000000000000000000000	(32e) = Tot 0.41 0.18 1.35 0.77 0.44 -0.25 0.17 0.44 0.25 0.47 0.44 0.25 0.47 0.44 0.42 0.46 0.40 0.42 0.46 0.42 0.46 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45 0.42 0.45	222908.8299 (198.9477 (198.9477 (196.9477 (196.9477 (197.947 (196.947 (197.947 (197	34) 35) 36) 36) 37)
Ventilation heat loss calculated monthly (38)m = Jan Feb Mar (38)m 63 1656 62 7648 63 2716	0.33 x (25 Apr)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	28)
Heat transfer coeff 124.5906 124.1895 123.7963 Average = Sum(39)m / 12 =	121.9495	121.6040	119.9955	119.9955	119.6976	120.6151	121.6040	122.3030	123.0337 (3 121.9479	39)
Jan Feb Mar HLP 1.0820 1.0785 1.0751 HLP (average)	Apr 1.0590	May 1.0560	Jun 1.0421	Jul 1.0421	Aug 1.0395	Sep 1.0475	Oct 1.0560	Nov 1.0621	Dec 1.0685 (4	40)
 Water heating energy requirements (kWh/year) 										
Assumed occupancy									2.8425 (4	42)
Hot water usage for mixer showers 0.0000 0.0000 0.0000 Hot water usage for haths	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (4	42a)
31.0333 30.5724 29.9234 Hot water usage for other uses	28.7267	27.8306	26.8370	26.3003	26.9448	27.6466	28.7097	29.9311	30.9284 (4	42b)
43.7396 42.1491 40.5585 Average daily hot water use (litres/day)	38.9680	37.3775	35.7869	35.7869	37.3775	38.9680	40.5585	42.1491	43.7396 (4 68.5360 (4	42c) 43)
Jan Feb Mar Daily hot water use	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte 118.4220 103.5544 108.3281 Energy content (annual)	67.6947 92.6707	65.2081 87.7826	62.6240 77.0035	62.0873 75.0892	64.3223 79.6444	66.6146 82.1424	69.2683 93.9964 Total = 9	72.0801 102.6914 Sum(45)m =	74.6680 (4 116.9120 (4 1138.2371	44) 45)
Distribution loss (46)m = 0.15 x (45)m 0.0000 0.0000 0.0000 Water storage loss:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (4	46)
Total storage loss 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (56)
If cylinder contains dedicated solar storage	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000 (57)
Primary loss 0.0000 0.0000 0.0000 Combi loss 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (59) 61)
100.6587 88.0212 92.0789	78.7701	74.6152	65.4530	63.8258	67.6978	69.8211	79.8969	87.2877	99.3752 (6	62)
WWHRS 0.0000 0.0000 0.0000 PV diverter 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (0	63a)
Solar input 0.0000 0.0000 0.0000 FGHRS 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (0	63c) 63d)
100.6587 88.0212 92.0789 12Total per year (kWh/year)	78.7701	74.6152	65.4530	63.8258	67.6978 Total pe	69.8211 r year (kW	79.8969 n/year) = S	87.2877 Sum(64)m =	99.3752 (6 967.5015 (6 968 (6	64) 64) 64)

iziotai per yea	r (kwii/year)	/										500	(04)
Electric shower	(s)												
	57.5627	51.2888	56.0054	53.4453	54.4482	51.9383	53.6695	54.4482	53.4453	56.0054	54.9523	57.5627	(64a)
				Total	Energy used	d by instant	taneous elec	ctric shower	(s) (kWh/y	ear) = Sum(64a)m =	654.7719	(64a)
Heat gains from	water heati	ing, kWh/mor	nth										
	39.5553	34.8275	37.0211	33.0538	32.2658	29.3478	29.3738	30.5365	30.8166	33.9756	35.5600	39.2345	(65)

SAP 10 Online 2.7.1

5. Internal gains (see Table 5 and 5a)

Matabalia anda	- (T-b] - F)	Unite											
metabolic gair	is (Table 5) Jan	, watts Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	0ct	Nov	Dec	
(66)m	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228	142.1228 (66	δ)
Lighting gains	(calculate	d in Append	dix L, equa	tion L9 or	L9a), also	see Table 5							
	157.2545	174.1031	157.2545	162.4963	157.2545	162.4963	157.2545	157.2545	162.4963	157.2545	162.4963	157.2545 (6)	7)
Appliances gai	ins (calcula	ted in App	endix L, eq	uation L13	or L13a), a	lso see Tab	le 5						
	278.7575	281.6501	274.3607	258.8426	239.2538	220.8430	208.5435	205.6509	212.9402	228.4583	248.0472	266.4579 (68	8)
Cooking gains	(calculated	in Append:	ix L, equat:	ion L15 or	L15a), also	see Table	5						
	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123	37.2123 (69	э)
Pumps, fans	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (70	ð)
Losses e.g. ev	aporation (negative va	alues) (Tab	le 5)									
-	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982	-113.6982 (7)	1)
Water heating	gains (Tabl	e 5)											
	53.1658	51.8267	49.7595	45.9081	43.3681	40.7608	39.4810	41.0437	42.8008	45.6661	49.3889	52.7345 (72	2)
Total internal	gains												
	554.8145	573.2167	547.0115	532.8838	505.5131	489.7369	470.9157	469.5858	483.8741	497.0157	525.5691	542.0837 (73	3)

6. Solar gain	s												
[Jan]			A	rea m2	Solar flux Table 6a W/m2	Speci or	g fic data Table 6b	Specific or Tab	FF data le 6c	Acce fact Table	ss or 6d	Gains W	
North South			4.1 8.2	700 900	10.6334 46.7521		0.5000 0.5000	0 0	.7500 .7500	0.77 0.77	00 00	11.5232 100.7210	(74 (78
Solar gains Total gains	112.2441 667.0586	186.9764 760.1931	247.5431 794.5546	297.5907 830.4745	328.4419 833.9551	324.8386 814.5756	313.6224 784.5381	290.1850 759.7708	264.4893 748.3634	204.1330 701.1487	133.6040 659.1732	96.6385 638.7222	(83 (84

7. Mean inter	nal temperat	ure (heatin	g season)									
Temperature d	uring heatir	ng periods i	n the livin	ig area from	1 Table 9, T	h1 (C)						21.0000 (85)
Utilisation f	actor for ga	ins for liv	ing area, n	i1,m (see T	able 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	51.0758	51.2408	51.4035	52.1820	52.3302	53.0317	53.0317	53.1637	52.7593	52.3302	52.0311	51.7221
alpha	4.4051	4.4161	4.4269	4.4788	4.4887	4.5354	4.5354	4.5442	4.5173	4.4887	4.4687	4.4481
util living a	rea											
, i i i i i i i i i i i i i i i i i i i	0.9955	0.9913	0.9847	0.9652	0.9176	0.7944	0.6319	0.6692	0.8594	0.9672	0.9911	0.9963 (86)
MTT	19 4037	19 5951	19 8572	20 2367	20 5856	20 8626	20 9633	20 9520	20 7853	20 3353	19 8154	19 3832 (87)
Th 2	20.0156	20.0184	20.0212	20.0344	20.0369	20.0484	20.0484	20.0506	20.0440	20.0369	20.0319	20.0267 (88)
util rest of	house											
	0.9942	0.9889	0.9803	0.9539	0.8877	0.7196	0.5133	0.5544	0.8008	0.9543	0.9882	0.9953 (89)
MIT 2	18.5566	18.7489	19.0112	19.3938	19.7270	19.9715	20.0358	20.0326	19.9104	19.4947	18.9791	18.5444 (90)
Living area f	raction								fLA =	Living area	/ (4) =	0.1633 (91)
MIT	18.6949	18.8871	19.1493	19.5314	19.8671	20.1170	20.1873	20.1827	20.0532	19.6319	19.1157	18.6814 (92)
Temperature a	djustment											0.0000
adjusted MIT	18.6949	18.8871	19.1493	19.5314	19.8671	20.1170	20.1873	20.1827	20.0532	19.6319	19.1157	18.6814 (93)

8. Space heating requirement

Utilisation	Jan 0.9919	Feb 0.9852	Mar 0.9749	Apr 0.9464	May 0.8813	Jun 0.7257	Jul 0.5318	Aug 0.5717	Sep 0.8014	Oct 0.9473	Nov 0.9845	Dec 0.9933	(94)
Useful gains	661.6618	748.9458	774.6340	785.9963	735.0036	591.1133	417.2110	434.3261	599.7552	664.1846	648.9402	634.4328	(95)
Heat loss rate	4.3000 W	4.9000	0.5000	8.9000	11.7000	14.6000	10.0000	16.4000	14.1000	10.0000	7.1000	4.2000	(96)
	1793.4700	1737.0487	1565.9386	1296.4994	993.1577	662.0172	430.4557	452.7838	718.0456	1098.3180	1469.5513	1781.6974	(97)
Space heating	kWh												
	842.0653	664.0051	588.7306	367.5622	192.0666	0.0000	0.0000	0.0000	0.0000	322.9953	590.8400	853.5649	(98a)
Space heating	requiremen	t - total p	er year (kW	h/year)								4421.8301	
Solar heating	kWh												
Color booting	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating	contributi	on - total	per year (k	wn/year)								0.0000	
Space neating	KWN										=		(00.)
	842.0653	664.0051	588.7306	367.5622	192.0666	0.0000	0.0000	0.0000	0.0000	322.9953	590.8400	853.5649	(980)
Space neating	requiremen	t atter sol	ar contribu	tion - total	. per year	(kwn/year)						4421.8301	
Space heating	per m2									(98c) / (4) =	38.4006	(99)

8c. Space	e cooling require	ment											
Calculate	ed for June, July	and August	. See Table	10b									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ext. temp	p. 4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
Heat loss	s rate W												
	0.0000	0.0000	0.0000	0.0000	0.0000	1127.9578	887.9668	909.7021	0.0000	0.0000	0.0000	0.0000 (10	96
Utilisati	ion 0.0000	0.0000	0.0000	0.0000	0.0000	0.7032	0.7979	0.7737	0.0000	0.0000	0.0000	0.0000 (10	91
Useful lo	oss 0.0000	0.0000	0.0000	0.0000	0.0000	793.1833	708.5110	703.8294	0.0000	0.0000	0.0000	0.0000 (10	ð2
Total gai	ins 0.0000	0.0000	0.0000	0.0000	0.0000	875.5642	843.9251	818.2338	0.0000	0.0000	0.0000	0.0000 (10	ð 3
-													

Full SAP Calculation Printout

Space cooling W	Wh 0.0000	0.0000	0.0000	0.0000	0.0000	59.3142	100.7481	85.1169	0.0000	0.0000	0.0000	0.0000	(104)
Cooled fraction	1								fC =	cooled area	/ (4) =	1.0000	(105)
Intermittency f	actor (Table	e 10b)											
	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	(106)
Space cooling k	(Wh												
	0.0000	0.0000	0.0000	0.0000	0.0000	14.8286	25.1870	21.2792	0.0000	0.0000	0.0000	0.0000	(107)
Space cooling r	requirement											61.2948	(107)
Energy for space	e heating											38.4006	(99)
Energy for space	e cooling											0.5323	(108)
Total												38.9329	(109)
Fabric Energy E	fficiency (D	DFEE)										38.9	(109)

SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET FABRIC ENERGY EFFICIENCY

1. Overall dwelling characteristics									
		Area	Storey	height			Volume		
		(m2)		(m)			(m3)		
Ground floor	42	2.1700 (1b)	х	2.6000	(2b)	-	109.6420	(1b)	-
First floor	41	1.8200 (1c)	х	2.8000	(2c)	-	117.0960	(1c)	-
Second floor	31	1.1600 (1d)	х	3.0000	(2d)	-	93.4800	(1d)	-
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)(1n)	115.1500							(4)	
Dwelling volume		(3a)+(3b)	+(3c)+(3	3d)+(3e)	(3n)	-	320.2180	(5)	

```
2. Ventilation rate
```

											m3	8 per hour	
Number of open chimneys Number of open flues Number of chimneys / flues ar Number of flues attached to : Number of blocked chimneys Number of blocked chimneys Number of natermittent extra Number of flueless gas fires	ttached to close solid fuel boile other heater ct fans	d fire r							0 * 0 * 0 * 0 * 0 * 4 * 0 *	80 20 10 20 35 20 10 10 40		0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 40.0000 0.0000 0.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
Infiltration due to chimneys Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered	, flues and fans	= (6a)+(6b)+	(6c)+(6d)+(6e)+(6f)+(6g	g)+(7a)+(7b)+(3	7c) =		40.000	Air 0 / (- cha 5) =	B	5 per hour 0.1249 Yes Lower Door 5.0000 0.3749 1	(8) (17) (18) (19)
Shelter factor Infiltration rate adjusted to	o include shelte	r factor					(20) = 3	1 - [0.075 (21) = (18)	x (19 x (2)] 0)	-	0.9250 0.3468	(20) (21)
100	Eob Man	Ann	Мам	Jun	Jul A	ura i	Son	Oct		Nov		Dec	

	Jan	reb	Pid1	Apr.	may	Juli	JUI	Aug	sep	ULL	NOV	Dec	
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000	(22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750	(22a)
Adj infilt rate													
	0.4422	0.4335	0.4248	0.3815	0.3728	0.3295	0.3295	0.3208	0.3468	0.3728	0.3901	0.4075	(22b)
If exhaust air h	eat pump us	ing Appendi	x N, (23b)	= (23a) x F	mv (equatio	n (N5)), ot	herwise (23	b) = (23a)				0.0000	(23b)
If balanced with	heat recov	ery: effici	ency in % a	llowing for	in-use fac	tor (from T	able 4h) =					0.0000	(23c)
Effective ac	0.5978	0.5940	0.5902	0.5728	0.5695	0.5543	0.5543	0.5515	0.5601	0.5695	0.5761	0.5830	(25)

Element	Gross	Openings	NetArea	U-value	Α×υ	K-value	A x K
	m2	m2	m2	W/m2K	W/K	kJ/m2K	kJ/K
TER Opaque door			2.1200	1.0000	2.1200		(26)
TER Opening Type (Uw = 1.20)			12.4600	1.1450	14.2672		(27)
GF			42.1700	0.1300	5.4821		(28a)
EXPOSED FLR OVER ENTRANCE			1.6500	0.1300	0.2145		(28b)
Wall1	127.0000	14.5800	112.4200	0.1800	20.2356		(29a)
ASHLAR WALL UNDER EAVES	24.6000		24.6000	0.1800	4.4280		(29a)
Plane	8.2000		8.2000	0.1100	0.9020		(30)
Slope	32.4700		32.4700	0.1100	3.5717		(30)
CEILING UNDER EAVES	10.6600		10.6600	0.1100	1.1726		(30)
BAY ROOF	2.0000		2.0000	0.1100	0.2200		(30)

SAP 10 Online 2.7.1

Total net area Fabric heat los Party Wall 1	of externa ss, W/K = S	l elements um (A x U)	Aum(A, m2)			248 44	.7500 (26)(.2800	30) + (32) = 0.0000	= 52.6 0.0	137		(31) (33) (32)
Thermal mass pa	arameter (T	MP = Cm /	TFA) in kJ/ı	m2K								198.9477 (35)
List of Thermal	l Bridges								ongth	Dei value	Tota	.1
KI EIE	ment	(i.e 1 di		1 14-4-1-1					angth	PS1-Value	1012	11
E2 Uthe	er linteis	(including	other stee	i linteis)				/.	.7700	0.0500	0.380	55
EA Jam	± h							27	7000	0.0500	1 295	0
ES Grou	und floon (nonmal)						20	3300	0.0500	2 251	90
ES GIOC	ermediate f	loor withi	n a dwellin	a				37	0100	0.1000	0 000	10
E11 Eas	ves (incula	tion at na	ften level)	5				57.	2000	0.0000	0.000	20
F12 Gab	hle (insula	tion at ce	iling level)				2	0000	0.0400	0.120	10
F13 Gat	ble (insula	tion at ra	fter level)	/				11	. 6000	0.0800	0.928	30
E16 Cor	rner (norma	1)	,					18	. 6000	0.0900	1.674	10
E18 Par	rtv wall be	tween dwel	lings					5	.2000	0.0600	0.312	20
P1 Part	ty wall - G	round floo	r					8	. 2000	0.0800	0.656	50
P2 Part	ty wall - I	ntermediat	e floor wit	hin a dwell	ing			16	.4000	0.0000	0.000	90
P5 Part	tý wall - R	oof (insul	ation at ra	fter level)				8	.2000	0.0800	0.656	50
R6 Flat	t ceiling							16	.4000	0.0600	0.984	10
E17 Cor	rner (inver	ted - inte	rnal area g	reater than	external a	rea)		13	.4000	-0.0900	-1.200	50
E16 Cor	rner (norma	1)						6	.0000	0.0900	0.546	90
E20 Exp	posed floor	(normal)						3.	.3400	0.3200	1.068	38
E21 Exp	posed floor	 (inverted))					3.	.3400	0.3200	1.068	38
E15 Fla	at roof wit	h parapet						4.	.0000	0.5600	2.246	90
E24 Eav	ves (insula	tion at ce	iling level	 inverted)			2	.0500	0.2400	0.492	20
Thermal bridges	s (Sum(L x	Psi) calcu	lated using	Appendix K)							15.1249 (36)
Point Thermal b	bridges										(36a) =	0.0000
Total fabric he	eat loss									(33) + (36)	+ (36a) =	67.7386 (37)
Ventilation hea	at loss cal	culated mo	nthly (38)m	= 0.33 x (25)m x (5)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(38)m	63.1659	62.7648	62.3716	60.5249	60.1793	58.5709	58.5709	58.2730	59.1904	60.1793	60.8783	61.6091 (38)
Heat transfer o	coett											
	130.9045	130.5034	130.1102	128.2634	127.9179	126.3094	126.3094	126.0116	126.9290	127.9179	128.6169	129.3477 (39)
Average = Sum(:	39)m / 12 =											128.2618
	Jan	Eeb	Man	Ann	May	Jup	1.1	Aug	Son	Oct	Nov	Dec
HI P	1 1368	1 1333	1 1299	1 1139	1 1109	1 0969	1 0969	1 0943	1 1023	1 1109	1 1170	1 1233 (40)
HLP (average)	1.1500	1.1555	1.1255	1.1155	1.1105	1.0505	1.0505	1.0545	1.1025	1.1105	1.11/0	1.1139
Days in mont	31	28	31	30	31	30	31	31	30	31	30	31

4 Waton heat	ing openau v		c (khlk/woon)										
4. Water field.	THE energy i	equinement	.s (kwii/year)										
Assumed occup	ancv											2 9/25	(42)
Hot water usa	ge for miver	showers										2.0425	(42)
not noter usu	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42a)
Hot water usa	ge for haths		010000	010000	0.0000	010000	0.0000	010000	0.0000	0.0000	0.0000	0.0000	(420)
not noter usu	31.0333	30.5724	29,9234	28.7267	27.8306	26.8370	26.3003	26.9448	27.6466	28.7097	29.9311	30.9284	(42h)
Hot water usa	ge for other	USES											(,
	43.7396	42.1491	40.5585	38,9680	37.3775	35.7869	35.7869	37.3775	38,9680	40.5585	42.1491	43.7396	(42c)
Average dailv	hot water u	se (litres	/dav)									68,5360	(43)
													,
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wat	er use												
,	74.7729	72.7215	70.4819	67.6947	65.2081	62.6240	62.0873	64.3223	66.6146	69.2683	72.0801	74.6680	(44)
Energy conte	118.4220	103.5544	108.3281	92.6707	87.7826	77.0035	75.0892	79.6444	82.1424	93.9964	102.6914	116.9120	(45)
Energy conten	t (annual)									Total = S	um(45)m =	1138.2371	
Distribution	loss (46)m	= 0.15 x (45)m										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(46)
Water storage	loss:												
Total storage	loss												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder c	ontains dedi	cated sola	ır storage										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Combi loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(61)
Total heat re	quired for w	ater heati	ng calculate	d for each	month								
	100.6587	88.0212	92.0789	78.7701	74.6152	65.4530	63.8258	67.6978	69.8211	79.8969	87.2877	99.3752	(62)
WWHRS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63a)
PV diverter	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63b)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63c)
FGHRS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(630)
Output from w	/n	00 0010	02 0700	70 7701	74 6152	65 4530	63,0350	67 6070	60 0011	70,0000	07 2077	00 3753	(())
	100.6587	88.0212	92.0789	/8.//01	74.6152	65.4530	63.8258	67.6978	69.8211	/9.8969	87.2877	99.3752	(64)
107-1-1								lotal pe	er year (kw	n/year) = S	um(64)m =	967.5015	(64)
Electric chou	ear (kwn/yea	ir)										968	(64)
Electric Show	E7 E627	E1 1000	EC ODEA	E2 44E2	E4 4492	E1 0292	E2 660E	E4 4493	E2 44E2	EC 00E4	E4 0E22	E7 E637	(642)
	57.5027	51.2000	50.0054	33.4435 Tota	34.4402	od by insta	55.0055	J4.4402	55.4455	50.0054 (vopp) = (v	34.9323 	57.3027	(640)
West gains for	om water hes	ting kkh/	month	1012	it chergy u	seu by insta	incaneous e.	TECTITC SHOW	ier(s) (kwii,	(year) = Su	ii(04a)iii =	034.7719	(04d)
mean Barns II.	20 5552	3/ 9275	27 0211	33 0539	32 2658	20 3479	20 3739	20 5265	30 9166	22 0756	35 5600	20 2245	(65)
	55.5555	54.02/5	57.0211	55.0550	52.2050	22.3470	20.0700	50.5505	20.0100	55.5750	55.5000	55.2545	(05)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Dec

elmhurst energy

Full SAP Calculation Printout

 (66)m
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 142.1228
 <t

1 Jan 1		A	rea	Solar flux		g		FF	Acce	ss	Gains
			m2	Table 6a	Speci	fic data	Specific	data	fact	or	W
				W/m2	or	Table 6b	or Tab	le 6c	Table	6d	
North		4.1	700	10.6334		0.6300	0	. 7000	0.77	00	13.5513 (74)
South		8.29	900	46.7521		0.6300	0	.7000	0.77	00	118.4478 (78)

Mean interr	nal temperat	ure (heatin	g season)									
Temperature du	uring heatin	g periods i	n the livir	ng area from	Table 9, 1	'h1 (C)						21.0000 (85)
Utilisation fa	actor for ga	ins for liv	ing area, r	ni1,m (see T	able 9a)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	48.6123	48.7617	48.9090	49.6132	49.7472	50.3807	50.3807	50.4998	50.1348	49.7472	49.4769	49.1974
alpha	4.2408	4.2508	4.2606	4.3075	4.3165	4.3587	4.3587	4.3667	4.3423	4.3165	4.2985	4.2798
util living an	rea											
	0.9949	0.9899	0.9821	0.9597	0.9073	0.7802	0.6188	0.6570	0.8488	0.9632	0.9899	0.9958 (86)
MIT	19.3295	19.5367	19.8168	20.2141	20.5763	20.8582	20.9611	20.9491	20.7768	20.3079	19.7594	19.3053 (87)
Th 2	19.9709	19.9737	19.9765	19.9895	19.9920	20.0034	20.0034	20.0055	19.9990	19.9920	19.9870	19.9819 (88)
util rest of H	nouse											
	0.9935	0.9872	0.9768	0.9467	0.8741	0.7015	0.4968	0.5384	0.7864	0.9488	0.9867	0.9947 (89)
MIT 2	18.4493	18.6572	18.9368	19.3358	19.6795	19.9256	19.9904	19.9869	19.8624	19.4323	18.8896	18.4334 (90)
Living area fr	raction								fLA =	Living area	/ (4) =	0.1633 (91)
MIT	18.5930	18.8007	19.0805	19.4792	19.8259	20.0778	20.1489	20.1440	20.0117	19.5753	19.0316	18.5757 (92)
Temperature ad	ijustment											0.0000
adjusted MIT	18.5930	18.8007	19.0805	19.4792	19.8259	20.0778	20.1489	20.1440	20.0117	19.5753	19.0316	18.5757 (93)

Space heat	ing require	ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9908	0.9829	0.9707	0.9384	0.8675	0.7081	0.5158	0.5563	0.7873	0.9410	0.9825	0.9924	(94)
Useful gains	682.8676	782.1162	815.8756	830.7688	775.7010	619.0329	434.3599	452.3659	627.7932	695.8544	673.1426	653.1098	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rat	e W												
	1871.0184	1814.0947	1636.8513	1356.9240	1039.4454	691.9026	448.2571	471.7885	750.3693	1148.1015	1534.6057	1859.4672	(97)
Space heating	kWh												. ,
	883,9842	693,4895	610,8059	378.8318	196.2259	0.0000	0.0000	0.0000	0.0000	336,4718	620,2535	897.5299	(98a)
Space heating	requirement	t - total p	er vear (kW	h/vear)								4617,5924	,
Solar heating	kWh			.,,									
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98h)
Solar heating	contributi	on - total	per vear (k	Wh/vear)								0.0000	()
Snace heating	kWh			.,,									
opene	883.9842	693,4895	610.8059	378.8318	196.2259	0.0000	0.0000	0.0000	0.0000	336.4718	620.2535	897.5299	(98c)
Snace heating	requiremen	t after sol	ar contribu	tion = tota	1 ner vear	(kWh/year)						4617 5924	()
Snace heating	ner m2	c 01001 501			i per jeur	(Runn) year)				(98)	(4) =	40 1007	(99)
Space nearing	per me									(500)) (+) -	4011007	(22)

8c. Space cooli	ing require	ment										
Calculated for	June, July	and August.	See lable	100								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Ext. temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000
Heat loss rate	W											
	0.0000	0.0000	0.0000	0.0000	0.0000	1187.3088	934.6899	957.6880	0.0000	0.0000	0.0000	0.0000 (100)
Utilisation	0.0000	0.0000	0.0000	0.0000	0.0000	0.7096	0.8017	0.7768	0.0000	0.0000	0.0000	0.0000 (101)
Useful loss	0.0000	0.0000	0.0000	0.0000	0.0000	842.4961	749.3660	743.9469	0.0000	0.0000	0.0000	0.0000 (102)
Total gains	0.0000	0.0000	0.0000	0.0000	0.0000	942.5972	908.6675	878.2226	0.0000	0.0000	0.0000	0.0000 (103)
Space cooling k	Wh											
	0.0000	0.0000	0.0000	0.0000	0.0000	72.0728	118.5204	99.9012	0.0000	0.0000	0.0000	0.0000 (104)
Cooled fraction	1								fC =	cooled area	/ (4) =	1.0000 (105)
Intermittency f	actor (Tab	le 10b)										

SAP 10 Online 2.7.1

elmhurst

energy

0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500	0.2500 (106)
Space cooling kwn 0.0000 Space cooling requirement	0.0000	0.0000	0.0000	0.0000	18.0182	29.6301	24.9753	0.0000	0.0000	0.0000	0.0000 (107) 72.6236 (107)
Energy for space nearing Energy for space cooling											40.1007 (99) 0.6307 (108) 40 7314 (109)
Fabric Energy Efficiency (TFEE)										40.7 (109)

elmhurst energy

X

BRUKL Output Document

HM Government

Compliance with England Building Regulations Part L 2021

Project name

Shell and Core

Block 6 - Comercial

As designed

Date: Tue Jun 06 17:54:02 2023

Administrative information

Building Details	Certification tool
Address: Address 1, City, Postcode	Calculation engine: Apache
	Calculation engine version: 7.0.21
	Interface to calculation engine: IES Virtual Environment
Certifier details	Interface to calculation engine version: 7.0.21
Name: Name	BRUKL compliance module version: v6.1.e.1
Telephone number: Phone	
Address: Street Address, City, Postcode	

Foundation area [m²]: 435.61

The CO₂ emission and primary energy rates of the building must not exceed the targets

Target CO ₂ emission rate (TER), kgCO ₂ /m ² annum	10.76	
Building CO ₂ emission rate (BER), kgCO ₂ /m ² annum	10.42	
Target primary energy rate (TPER), kWhee/mannum	115.11	
Building primary energy rate (BPER), kWh₀₅/m:annum	112.57	
Do the building's emission and primary energy rates exceed the targets?	BER =< TER	BPER =< TPER

The performance of the building fabric and fixed building services should achieve reasonable overall standards of energy efficiency

Fabric element	Ua-Limit	Ua-Cak	UI-Calc	First surface with maximum value			
Walls*	0.26	0.15	0.15	0000000:Surf[5]			
Floors	0.18	0.13	0.13	0000000:Surf[0]			
Pitched roofs	0.16	-	-	No pitched roofs in building			
Flat roofs	0.18	-	-	No flat roofs in building			
Windows** and roof windows	1.6	1.2	1.2	0000000:Surf[1]			
Rooflights***	2.2 No roof lights in building						
Personnel doors^	1.6	1	1	0000008:Surf[1]			
Vehicle access & similar large doors	1.3	-	•	No vehicle access doors in building			
High usage entrance doors	3	-	-	No high usage entrance doors in building			
Uscale = Calculated average U-values [W/(m ² K)] Uscale = Calculated area-weighted average U-values [W/(m ² K)] Uscale = Calculated area-weighted average U-values [W/(m ² K)] * Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows. ** Display windows and similar glazing are excluded from the U-value check. ** Or fire doors, limiting U-value is 1.8 W/m ² K NB: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.							
Air permeability Limiting standard This building							
m ³ /(h.m ²) at 50 Pa 8 5							

Building services

For details on the standard values listed below, system-specific guidance, and additional regulatory requirements, refer to the Approved Documents.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Split units

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR efficiency		
This system	4	5.5	0	-	-		
Standard value	2.5*	5	N/A	N/A	N/A		
Automatic monitoring & targeting with alarms for out-of-range values for this HVAC system YES							
* Standard shown is for all types >12 kW output, except absorption and gas engine heat pumps.							

"No HWS in project, or hot water is provided by HVAC system"

Zone-level mechanical ventilation, exhaust, and terminal units

ID	System type in the Approved Documents
Α	Local supply or extract ventilation units
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal balanced supply and extract ventilation system
Е	Local balanced supply and extract ventilation units
F	Other local ventilation units
G	Fan assisted terminal variable air volume units
Н	Fan coil units
1	Kitchen extract with the fan remote from the zone and a grease filter
NB: L	imiting SFP may be increased by the amounts specified in the Approved Documents if the installation includes particular components.

Zone name	SFP [W/(I/s)]											
ID of system type	A	в	С	D	E	F	G	н	1	HIR efficiency		
Standard value	0.3	1.1	0.5	2.3	2	0.5	0.5	0.4	1	Zone	Standard	
01.E.Restaurant-Kitchen	-	-	-	-	-	2	-	-	0.8	-	N/A	
01.E.Restaurant-Toilets	-	-	0.4	-		-	-			-	N/A	

Shell and core configuration

Zone	Assumed shell?
00.E.Restaurant	YES
00.E.Restaurant-Circulation	YES
00.E.Restaurant-Office	YES
00.E.Retail 01	YES
00.E.Retail 02	YES
01.E.Restaurant-Circulation	YES
01.E.Restaurant-Circulation	YES
01.E.Restaurant-Kitchen	YES
01.E.Restaurant-Toilets	YES

General lighting and display lighting	General luminaire	Display light source			
Zone name	Efficacy [lm/W]	Efficacy [lm/W]	Power density [W/m ²]		
Standard value	95	80	0.3		
00.E.Restaurant	100	80	1.5		

General lighting and display lighting	General luminaire	Display light source	
Zone name	Efficacy [lm/W]	Efficacy [lm/W]	Power density [W/m ²]
Standard value	95	80	0.3
00.E.Restaurant-Circulation	100	-	-
00.E.Restaurant-Office	100	-	-
00.E.Retail 01	100	80	1.5
00.E.Retail 02	100	80	1.5
01.E.Restaurant-Circulation	100	-	-
01.E.Restaurant-Circulation	100		
01.E.Restaurant-Kitchen	100	-	-
01.E.Restaurant-Toilets	100	-	-

The spaces in the building should have appropriate passive control measures to limit solar gains in summer

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
00.E.Restaurant	NO (-19.2%)	NO
00.E.Restaurant-Circulation	N/A	N/A
00.E.Restaurant-Office	N/A	N/A
00.E.Retail 01	NO (-41%)	NO
00.E.Retail 02	NO (-86%)	NO
01.E.Restaurant-Circulation	NO (-32.8%)	NO
01.E.Restaurant-Circulation	N/A	N/A
01.E.Restaurant-Kitchen	NO (-74.8%)	NO
01.E.Restaurant-Toilets	NO (-55.5%)	NO

Regulation 25A: Consideration of high efficiency alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?	YES
Is evidence of such assessment available as a separate submission?	YES
Are any such measures included in the proposed design?	YES

Technical Data Sheet (Actual vs. Notional Building)

Building Global Pa	Buildi	ng Use		
	Actual	Notional	% Area	Building
Floor area [m ²]	871.2	871.2	45	Retail/Fina
External area [m ²]	1370.1	1370.1	55	Restaurant
Weather	NOR	NOR	-	Offices and
Infiltration [m ³ /hm ² @ 50Pa]	5	3	-	Storage or I
Average conductance [W/K]	473.83	602.5		Hotels
Average U-value [W/m ² K]	0.35	0.44		Residential
Alpha value* [%]	25	10		Residential Residential

* Percentage of the building's average heat transfer coefficient which is due to thermal bridging

% Area	Building Type
45	Retail/Financial and Professional Services
55	Restaurants and Cafes/Drinking Establishments/Takeaways
	Offices and Workshop Businesses
	General Industrial and Special Industrial Groups
	Storage or Distribution
	Hotels
	Residential Institutions: Hospitals and Care Homes
	Residential Institutions: Residential Schools
	Residential Institutions: Universities and Colleges
	Secure Residential Institutions
	Residential Spaces
	Non-residential Institutions: Community/Day Centre
	Non-residential Institutions: Libraries, Museums, and Galleries
	Non-residential Institutions: Education
	Non-residential Institutions: Primary Health Care Building
	Non-residential Institutions: Crown and County Courts
	General Assembly and Leisure, Night Clubs, and Theatres
	Others: Passenger Terminals
	Others: Emergency Services
	Others: Miscellaneous 24hr Activities
	Others: Car Parks 24 hrs
	Others: Stand Alone Utility Block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	14.79	21.75
Cooling	5.7	3.89
Auxiliary	12.99	11.19
Lighting	15.33	14.65
Hot water	27.13	25.78
Equipment*	69.02	69.02
TOTAL**	75.94	77.26

* Energy used by equipment does not count towards the total for consumption or calculating emissions. ** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0
Displaced electricity	0	0

Energy & CO ₂ Emissions Summary				
	Actual	Notional		
Heating + cooling demand [MJ/m ²]	293.23	282.44		
Primary energy [kWh _{PE} /m ²]	112.57	115.11		
Total emissions [kg/m ²]	10.42	10.76		

ŀ	HVAC Systems Performance									
Sy	System Type Heat dem MJ/m2 Cool dem MJ/m2 Heat con kWh/m2 Cool con kWh/m2 Aux con kWh/m2 Heat SSEEF Cool SSEEF Heat gen SSEEF Cool gen SEFF								Cool gen SEER	
[\$1] Split or m	ulti-split sy	stem, [HS]	ASHP, [HF1	Electricit	y, [CFT] Ele	ctricity			
	Actual	208.9	84.3	14.8	5.7	13	3.92	4.11	4	5.5
	Notional	217.6	64.8	21.8	3.9	11.2	2.78	4.63		

Key to terms

Heat dem [MJ/m2]	= Heating energy demand
Cool dem [MJ/m2]	= Cooling energy demand
Heat con [kWh/m2]	= Heating energy consumption
Cool con [kWh/m2]	= Cooling energy consumption
Aux con [kWh/m2]	= Auxiliary energy consumption
Heat SSEFF	= Heating system seasonal efficiency (for notional building, value depends on activity glazing class)
Cool SSEER	= Cooling system seasonal energy efficiency ratio
Heat gen SSEFF	= Heating generator seasonal efficiency
Cool gen SSEER	= Cooling generator seasonal energy efficiency ratio
ST	= System type
HS	= Heat source
HFT	= Heating fuel type
CFT	= Cooling fuel type

Appendix E - Indicative PV arrays' size

Apartment blocks		no. PVs	House types	no. PVs
Wensum Edge	Block 1	40	HT-A (2B/3P)	6
	Block 2	154	HT-B (3B/5P)	6
	Block 3 & 4	116	HT-D (4B/6P)	6
	Block 5	40	HT-G (4B/7P)	6
	Block 6	108	HT-H (3B/5P)	8
	Block 7	49	HT-I (3B/6P)	8
The Views	Block 1	30	HT-L (4B/5P)	6
	Block 2a	12	HT-O (3B/4P)	9
	Block 2b	12	HT-P (5B/8P)	9
Yare Edge	Block 1c	20	HT-A (2B/3P)	6

Appendix F - Thermal bridging

	Ref.	Junction detail	Psi- value	Detail no.
Junctions	E1	Steel lintel with perforated steel base plate	0.053	610363
with an	E2	Other lintels (including other steel lintels)	0.054	610340
wall	E3	Sill	0.040	610341
	E4	Jamb	0.049	610342
	E5	Ground floor (normal)	0.038	610344
	E20	Exposed floor (normal)	0.108	610360
	E21	Exposed floor (inverted)	0.109	610361
	E22	Basement floor	0.072	610366
	E6	Intermediate floor within a dwelling	0.012	610349
	E7 Party floor between dwellings (in blocks of flats)		0.130	610348
	E10	Eaves (insulation at ceiling level)	0.042	610334
	E24	Eaves (insulation at ceiling level - inverted)	0.037	610362
	E11	Eaves (insulation at rafter level)	-0.031	610336
	E12	Gable (insulation at ceiling level)	0.087	610335
	E13	Gable (insulation at rafter level)	0.091	610337
	E14	Flat roof	0.049	610338

	E15	Flat roof with parapet	0.100	610339
	E16	Corner (normal)	0.040	610355
	E17	Corner (inverted – internal area greater than external area)	-0.063	610356
	E18	Party wall between dwellings	0.049	610347
	E25	Staggered party wall between dwellings	0.079	610357
Junctions with a party wall	P1	Ground floor	0.066	610352
	P6	Ground floor (inverted)	0.124	610367
	P7	Exposed floor (normal)	0.149	610358
	P8	Exposed floor (inverted)	0.216	610359
	P4	Roof (insulation at ceiling level)	0.332	610353
	P5	Roof (insulation at rafter level)	0.211	610354
Junctions within a roof or with a room-in- roof	R1	Head of roof window	0.107	610435
	R2	Sill of roof window	0.118	610437
	R3	Jamb of roof window	0.078	610436
	R6	Flat ceiling	0.038	610446
	R7	Flat ceiling (inverted)	-0.02	610447
	R8	Roof to wall (rafter)	0.02	610444
	R9	Roof to wall (flat ceiling)	0.048	610445

Legal Notice and Disclaimer

This Energy Statement (the "Report") has been prepared by CBRE Limited ("CBRE") exclusively for Serruys Property Co Ltd (the "Client") in accordance with the terms of engagement entered into between CBRE and the Client dated 27th February 2023 (the "Instruction"). The Report is confidential to the Client and any other Addressees named herein and the Client and the Addressees may not disclose the Report unless expressly permitted to do so under the instruction.

Where CBRE has expressly agreed (by way of a reliance letter) that persons other than the Client or the Addressees can reply upon the Report (a "Relying Party" or "Relying Parties") then CBRE shall have no greater liability to any Relying Party than it would have if such party had been named as a joint client under the Instruction.

CBRE's maximum aggregate liability to the Client, Addressees and to any Relying Parties howsoever arising under, in connection with or pursuant to this Report and/or the Instruction together, whether in contract, tort, negligence or otherwise shall not exceed £1 million (one million pounds).

Subject to the terms of the Instruction, CBRE shall not be liable for any indirect, special or consequential loss or damage howsoever caused, whether in contract, tort, negligence or otherwise, arising from or in connection with this Report. Nothing in this Report shall exclude liability which cannot be excluded by law.

If you are neither the Client, an Addressee nor a Relying Party then you are viewing this Report on a non-reliance basis and for informational purposes only. You may not rely on the Report for any purpose whatsoever and CBRE shall not be liable for any loss or damage you may suffer (whether direct, indirect or consequential) as a result of unauthorised use of or reliance on this Report. CBRE gives no undertaking to provide any additional information or correct any inaccuracies in the Report.

None of the information in this Report constitutes advice as to the merits of entering into any form of transaction.

If you do not understand this legal notice then it is recommended that you seek independent legal advice.