

D.2 LiDAR Comparison

1 Background and Context

2 Highway Drainage (adoptable)

3 Wensum Edge

Morale Treatment of White Indian

alenintextoffitt projer dituri 1000 St. comencer iet ii

> de enderlier de l'ite. He 1 W. Life de S. Hill. He l'Av

de recordon ren

4 Fen Village

5 Yare Newton

6 General Discussion

er er er er er et et er er er e or er er er er er er et et er er er er er er er er et et et er er E e et er er er er er er er et et er es er er er er er er er er en er elnem it kolt er er er er er er er er

loganet, with particle, and up her

the create mile in the standard of the standar

GH explained that

POST-MEETING NOTE: use of a subsoiler is an established method for dealing with soil compaction and 'hardpan'. Such methods could be included within the Construction Management Plan and used to improve drainage within 'green' areas following construction activities.

POST-MEETING NOTE: an allowance for urban creep would ordinarily only apply to residential elements of a development. SL to confirm NCC's policy position and requirements

POST-MEETING NOTE: Noting that the NPPF Annex 3 classifies car-parks as 'less vulnerable', it would be helpful if NCC could confirm (i) its formal policy position on the design and siting of car-parking areas (for both residential and commercial uses) within flood risk areas and (ii) the policy/guidance/standards that underpin NCC's advice/requirements.

F Ground Investigation

G Hydraulic Modelling

Technical note summarising hydraulic model information for EA review.

Hydraulic Modelling Technical Report

Draft (S3-P01)

June 2023

Prepared for:

Serruys Property Company Ltd

www.jbaconsulting.com

Document Status

Issue date 15/06/2023

Issued to Stolon Studio

BIM reference DEALG-JBAU-XX-XX-HM-RP-0001

Revision S1-P01

Prepared by Peter Barber MEng

Analyst

Reviewed by Gavin Hodson BSc FdSc

Chartered Analyst

Authorised by Gavin Hodson BSc FdSc

Chartered Analyst

Contents

1	Model	Build 5			
	1.1	Overview 5			
	1.2	Wensum Model - CH2M 2017 5			
	1.3	Broadlands Environmental Services Limited - Jacobs & CH2M 2019 7			
	1.4	Norwich Model - JBA 2023 9			
	1.5	Proposed Development 10			
	1.6	Model Run Record 13			
2	Model Boundary Conditions 14				
	2.1	Overview 14			
	2.2	Climate Change Allowances 16			
	2.3	Wensum Model Inflows - Norwich 16			
	2.4	Wensum Model BESL Model Border 22			
	2.5	BESL Inflows - Yare 23			
	2.6	BESL Downstream Boundary - Reedham 24			
3	Model	Performance 26			
	3.1	Overview 26			
	3.2	Model Sensitivity Analysis26			
	3.3	Model Stability 26			

List of Figures

Figure 1-1: Wensum Model - CH2M, 2017 - Extent 5	
Figure 1-2: BESL Model - Jacobs & CH2m, 2019 - Extent 7	
Figure 1-3: Norwich Model - JBA 2023 - 1D Model Node Source 9	
Figure 1-4: Norwich Model - JBA, 2023 - Deal Ground Proposed development	11
Figure 1-5: Norwich Model - JBA, 2023 - Deal Ground LiDAR Comparison 12	
Figure 2-1: Model Boundary Conditions Location Plan15	
Figure 2-2: Storm Duration Analysis - WE1227d - 1% AEP 18	
Figure 2-3: Storm Duration Analysis - YARF1_550d - 1% AEP 18	
Figure 2-4: ReFH2 62-Hour Model Inflows - WE1227d 19	
Figure 2-5: ReFH2 62-Hour Model Inflows - YARF1_550d 19	
Figure 2-6: Model Flow Method Comparison - WE1227d 20	
Figure 2-7: Model Flow Method Comparison - YARF1_550d 21	
Figure 2-8: Wensum / BESL Model Border - SX Boundary Condition 22	
Figure 2-9: Stage-Time Graph - Y10000d 25	
Figure 3-1: Model Stability Analysis - 3.3% AEP + 11%CC 1D Summary 27	
Figure 3-2: Model Stability Analysis - 1.0% AEP + 11%CC 1D Summary 27	
Figure 3-3: Model Stability Analysis - Cumulative Mass Error (%) 29	
Figure 3-4: Model Stability Analysis - dVol 30	

List of Tables

Table 1-1: Norwich Model - JBA 2023 - Proposed Culverts	10
Table 1-2: Model Simulation Record 13	
Table 2-1: Model Boundary Conditions - Summary 14	
Table 2-2: Climate Change Allowances 16	
Table 2-3: ReFH2 Approach - Key Catchment Descriptors	17
Table 2-4: Peak Flow comparison 21	
Table 2-5: BESL Inflows - Peak Flows (m3s-1) 23	
Table 2-6: Peak Stage 24	
Table 4-3: Model Stability Parameter Adjustments 28	

1 Model Build

1.1 Overview

The model developed as part of this study is a combination of two Environment Agency (EA) models that have been truncated and merged to form one site specific model. These two models are:

- The Wensum (Norwich) Model (CH2M, 2017)
- The Broadlands Environmental Services Limited (BESL) model (Jacobs & CH2M, 2019)

This report documents decisions made in regard to model set up and assumptions made in the modelling process.

1.2 Wensum Model - CH2M 2017

The Wensum model starts is Drayton (617759,313244) and ends at downstream of Norwich (628663,307535). The start of the Wensum model is 1D only which and includes the River Tud. The model becomes a 1D | 2D model from Mile Cross Bridge (621737, 309873) until the downstream boundary of the model located immediately downstream of the A47.

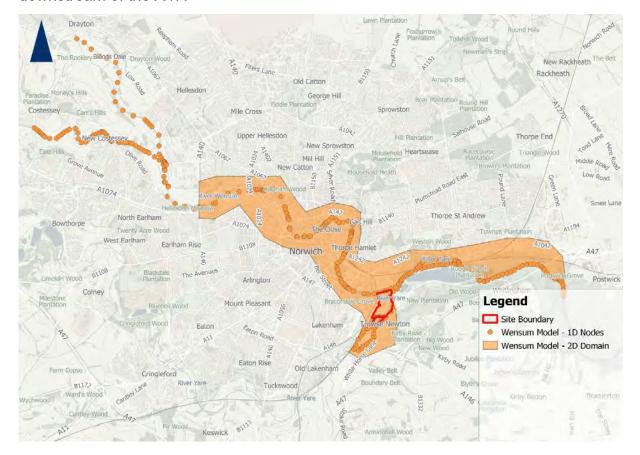


Figure 1-1: Wensum Model - CH2M, 2017 - Extent

1.2.1 Model Review - Wensum 2017

A detailed model review has been conducted and is provided in the supporting documentation named "2022s0896-Norwich_Techincal_Review_V1.0". The key model issues have been highlighted below:

- Model instability in the upper reaches of River Wensum located well away from the subject site.
- Out-of-date LIDAR 2009/11 LIDAR in existing model.
- The positioning of 1D-2D connections is not necessarily along channel bank tops.
- Incorrect schematisation of some bridge decks in model which have been included in both the 1D and 2D domains.
- Widespread use of 0.03 roughness across the 2D floodplain which is not necessarily realistic.
- Missing flow route connection between Whittingham Little and Great Broad.

1.2.2 Model Updates - Wensum 2017

The model extends much further upstream along the Wensum than is required for this site-specific study. Therefore, model truncation is desirable to reduce run times (originally 40 hours for the entire model) and the removal of model instability associated with the 1D model build in the upper reaches of the River Wensum. A review of the existing model outputs has found that high ground at Carrow Road (to the west of the development site) acts a barrier to flow. With flow confined to the Carrow Road bridge, this provides a suitable location to truncate the model where flows can easily be extracted.

As stated in the model review, the existing model uses out-of-date LIDAR (2009/11). This will be updated to use the newer 2015 LIDAR.

1.3 Broadlands Environmental Services Limited - Jacobs & CH2M 2019

The BESL model represents much of the north-east coast of east Anglia. Much of the Broadlands system is below sea level, the model included many man-made defences, drainage structures as well as the main watercourses: Ant, Bure, Chet, Thurne, Waveney and Yare. The Broadland water levels are tidally dominated and features large storage areas.

The BESL model was incorporated into this study to accurately represent the tidal downstream boundary. The Wensum 2017 downstream boundary did not account for the large amount of tidal storage. By using the BESL model in conjunction with the Wensum model the tidal impact at the site can be better represented and allow for comparison with gauge data at Reedham.

Figure 1-2: BESL Model - Jacobs & CH2m, 2019 - Extent

1.3.1 Model Review - BESL 2019

A brief model review was performed. Model updates were conducted recently by Jacobs and CH2M in 2019. The key review findings are highlighted below:

- Bank top levels compare well with latest topographical survey.
- Model stability is within tolerance.

• Implementation of hydrology climate change allowances is unconventional, and the methods used are not detailed in the supplied report.

1.3.2 Model Updates - BESL 2019

The BESL model covers a large portion of the Broadlands system that is not required for this modelling study. The model was truncated at the upstream node Y30200D and the downstream node Y10000d. The upstream node was truncated here to provide continuance from the Wensum model. The downstream node was terminated at Y10000d as it provides comparison with gauge data at Reedham level gauge.

1.4 Site Specific Model - JBA 2023

The site-specific model is a merger of the Wensum model and BESL model. Figure 1-3 shows the 1D model data sources and extent of the Norwich model. The model also contains the model updates that have been previously discussed in section 1.2.2 and 1.3.2.

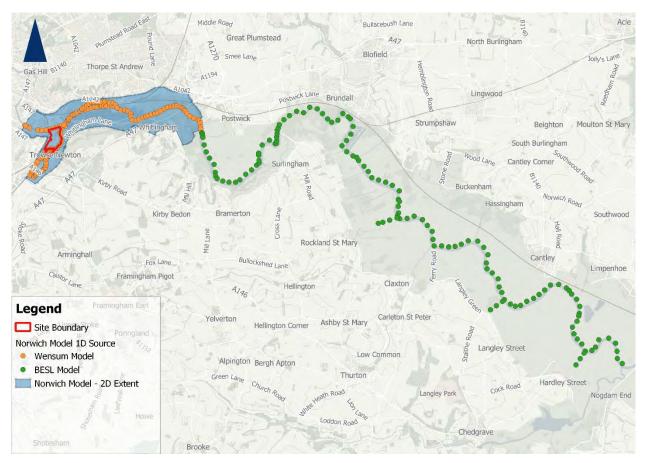


Figure 1-3: Norwich Model - JBA 2023 - 1D Model Node Source

1.5 Proposed Development

The proposed development is shown in Figure 1-4. The development will involve ground raising for development areas, the inclusion flood compensatory storage, and the addition of a road bridge across the River Yare.

The development will require the addition of four culverts, Figure 1-4 shows the location and a summary is shown in Table 1-1. There will be two at the north of the site, to maintain the flow route from the Bottle kiln to the Wensum. And two culverts either side of the proposed bridge that connects Deal Ground and May Gurney. The culverts at the bridge maintain conveyance through the bridge.

Table 1-1: Norwich Model - JBA 2023 - Proposed Culverts

Culvert Location	Upstream Invert level (mAOD)	Downstream Invert level (mAOD)	Size (width x height) (m)
Bridge (Left Bank)	1.22	1.21	7.50 x 2.70
Bridge (Right Bank)	1.82	1.81	7.50 x 0.97
DG Culvert North	1.21	1.20	0.6 (diameter)
DG culvert South	1.22	1.21	0.6 (diameter)

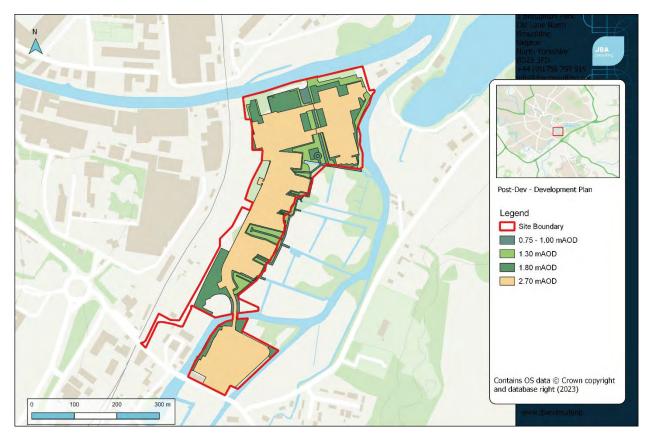


Figure 1-4: Norwich Model - JBA, 2023 - Deal Ground Proposed development

The baseline LiDAR and development plan LiDAR are compared in Figure 1-5. It can be seen where the land raising activities have occurred, as well as the storage space gained.

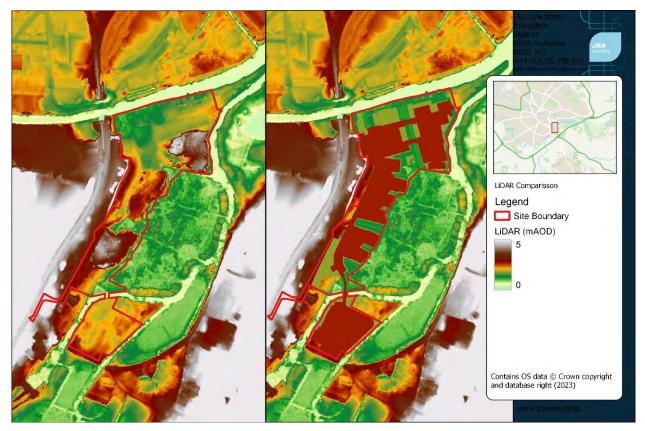


Figure 1-5: Norwich Model - JBA, 2023 - Deal Ground LiDAR Comparison

1.6 Model Run Record

Table 1-2 shows a complete model run list for the Norwich Model. The fluvial AEP indicates the input event for all the fluvial model inflows. The DSBDY has been calculated by using the Norfolk Broads model (BESL). The fluvial and tidal AEP listed in Table 1-2 show the input values for the downstream boundary.

Table 1-2: Model Simulation Record

Primary Scenario	Fluvial AEP	DSBDY Event (Fluvial AEP Tidal event)	
Baseline	3.3%	5% MHWS	
	3.3% + 11% CC	5% + 11%CC MHWS + CC	
	1.0%	1.0% MHWS	
	1.0% + 11% CC	1.0% +11%CC MHWS + CC	
	0.1%	0.1% MHWS	
	0.1% + 11% CC	0.1% + 11%CC MHWS + CC	
MP_F_001	3.3%	5% MHWS	
	3.3% + 11% CC	5% + 11%CC MHWS + CC	
	1.0%	1.0% MHWS	
	1.0% + 11% CC	1.0% +11%CC MHWS + CC	
	0.1%	0.1% MHWS	
	0.1% + 11%CC	0.1% + 11%CC MHWS + CC	

2 Model Boundary Conditions

2.1 Overview

The 1D model has ten boundary conditions in total, which can be divided into four categories:

Wensum Model inflows - There are six inflows along the truncated Wensum model. The inflows at WE1227d and YARF1_550d are the upstream inflows of the Wensum and Yare rivers, respectively, where the upstream of the original model was truncated. The remaining four inflows are lateral inflows, representing incoming water from other sources.

Wensum BESL Model Border - Due to the combination of a 1D|2D model into a 1D only model, an additional boundary condition was required to transfer the mass of water in the 2D floodplain into the downstream 1D model boundary.

BESL Model Inflows - These are the two remaining Yare inflows present in the original BESL model between the point of upstream truncation (Y30200U) and downstream truncation (Y10000).

BESL Downstream Boundary - This is the downstream model boundary located upstream of Reedham, just before the confluence with the River Chet.

Table 2-1 summarises the inflows, and Figure 2-1 shows the location of the model nodes.

Table 2-1: Model Boundary Conditions - Summary

Category	Boundary Name	Boundary Type	Location (NGR Reference)
Wensum Model Inflows	WE1227d	QT	Carrow Road Bridge (623903, 307741)
Wensum Model Inflows	YARF1_550d	QT	Loddon Road Bridge (A146) (624007, 306386)
Wensum Model	Y5int	Lateral	YAN6913 (624238, 306752)
Inflows		ReFH QT	YAN5955 (624889, 307314)
Wensum Model	N4	Lateral	YAN5134 (625166, 308010)
Inflows		ReFH QT	YAN4200 (625989, 308270)
Wensum Model	N6	Lateral	YAN2894 (626988, 307924)
Inflows		ReFH QT	YAN1803 (628034, 308282)

Category	Boundary Name	Boundary Type	Location (NGR Reference)
Wensum Model Inflows	N7	Lateral ReFH QT	YAN1607 (628222, 308206) YAN0817 (628724, 307707)
Wensum Model / BESL	YAN0726ND	HT BDY	Wensum model / BESL model border (628446, 307336)
BESL Inflows	YARE1	FEH QT	Y22400U (632822, 307088)
BESL Inflows	YARE2	FEH QT	SD6LD (634064, 305542)
BESL Downstream Boundary	Y10000d	HTBDY	Upstream of Reedham (640046, 301255)

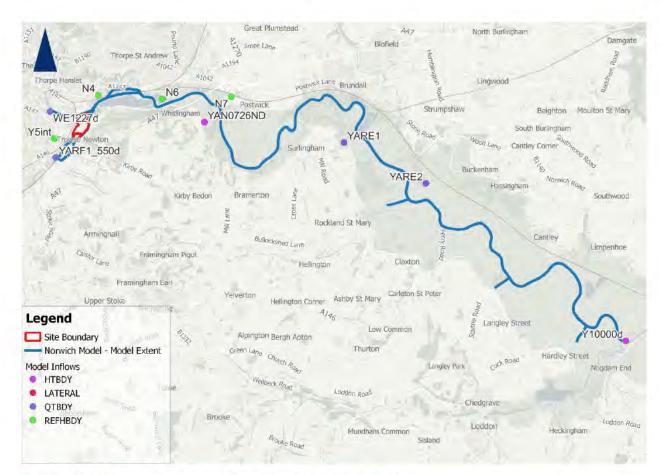


Figure 2-1: Model Boundary Conditions Location Plan

2.2 Climate Change Allowances

The River Wensum and River Yare are located within the Broadlands River Management Catchment. To estimate the fluvial model inflows for the catchment's lifetime, the central value from the 2080s epoch was used. The climate change allowances are shown in Table 2-2.

Table 2-2: Climate Change Allowances

Epoch	Central	Higher	Upper	
2020s	8%	14%	27%	
2050s	3%	10%	27%	
2080s	11%	20%	44%	

The tidal climate change allowances have remained unchanged from the Jacobs BESL model.

2.3 Model Inflows - Norwich

The lateral inflows (Y5int, N4, N6, and N7) have been configured with a ReFH flow-time boundary, which is applied to lateral inflow across multiple nodes. This approach has remained unchanged from the original Wensum model.

As for the inflows at WE1227d and YARF1_550d, they are flow time boundaries (QT) and represent the upstream inflows of the Wensum and Yare rivers, respectively. Two approaches have been taken to find the upstream model inflow values. One approach involves extracting the model flow-time series results from the node at the point of truncation in the full Wensum model, while the other approach uses the ReFH2 method.

2.3.1 Wensum Model 2017 Model Inflows

This approach involves extracting the flow-time series data from the WE1227d and YARF1_550d nodes from the original model, which utilizes the existing hydrology. These flows were updated as part of the 2017 assessment.

2.3.2 ReFH2 Approach

2.3.2.1 Catchment Descriptors

The hydrology has been calculated using an Urban ReFH2 approach. The catchment descriptors were captured from the FEH web application at the inflow node locations. A summary of key catchment descriptors is shown in Table 2-3.

The two catchments exhibit many similarities; both have high BFIHOST values, which are indicative of chalk catchments. At this stage in the rivers' reach, the Wensum catchment covers a much larger area than the Yare catchment.

Table 2-3: ReFH2 Approach - Key Catchment Descriptors

Catchment Descriptors	WE1227d	YARF1_550d
Area (km2)	673	278
URBEXT	0.032	0.032
SAAR (mm)	666	632
BFIHOST	0.689	0.547
DPLBAR (km)	47.61	30
DPSBAR (m/km)	20.6	19.5

2.3.2.2 Storm Duration Analysis

The critical storm duration can be defined as 'The duration of rainfall event likely to cause the highest peak flows or levels at a particular location, for a specified return period event' (CIRIA, 2015).

The storm duration of 1% AEP rainfall events have been compared for each catchment in Figure 2-2 and Figure 2-3. The storm durations that yield the peak flow are 62 hours for the Wensum catchment and 42 hours for the Yare catchment. However, the storm duration with the greatest peak flows may not necessarily cause the greatest flooding impact. This is because some catchments are more sensitive to volume, such as those with large floodplain storage, and therefore a longer storm duration would result in more water in the catchment.

The chosen model storm duration is the 62-hour storm duration for both catchments. Both catchments will be modelled with the same storm duration due to the equidistant location of the confluence from both inflow locations. This means that both watercourses will peak together at the confluence near the site, providing a conservative estimated of flooding.

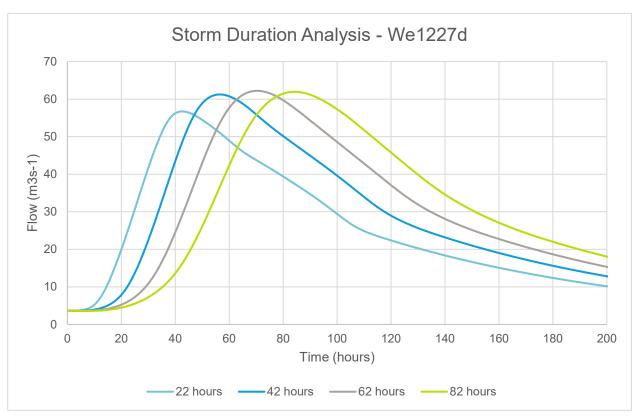


Figure 2-2: Storm Duration Analysis - WE1227d - 1% AEP

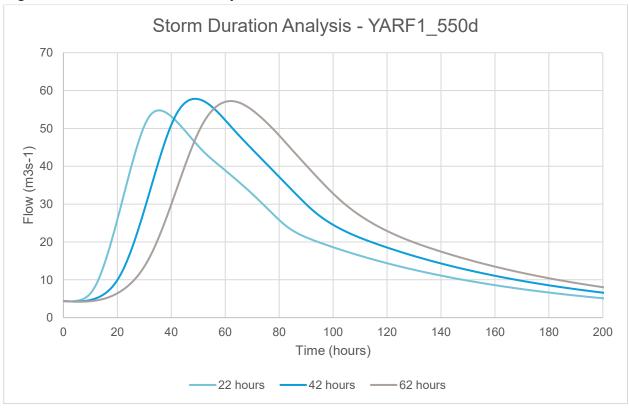


Figure 2-3: Storm Duration Analysis - YARF1_550d - 1% AEP

2.3.2.3 ReFH2 Model Inflows

The ReFH2 Model inflows are shown in Figure 2-4 and Figure 2-5. The Wensum shows the higher peaks, which is expected given the higher catchment area.

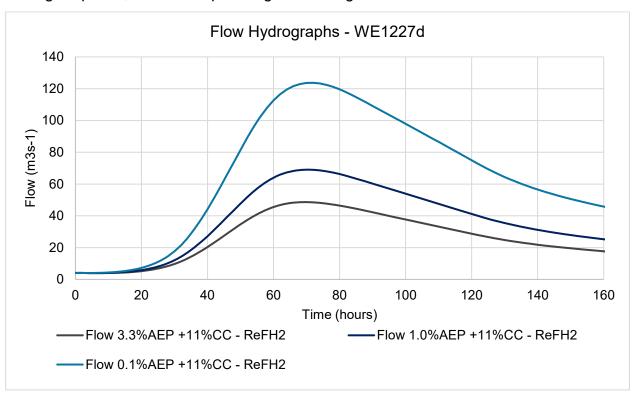


Figure 2-4: ReFH2 62-Hour Model Inflows - WE1227d

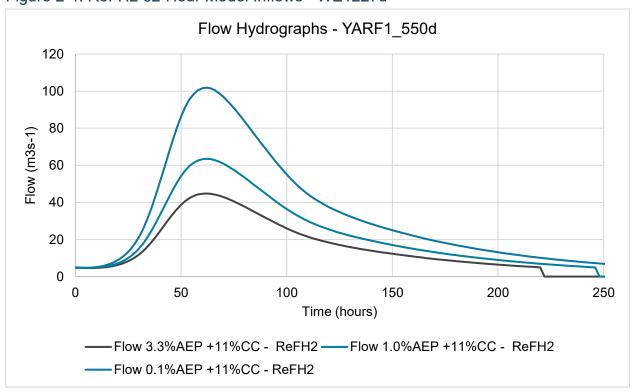


Figure 2-5: ReFH2 62-Hour Model Inflows - YARF1 550d

2.3.3 Method Comparison

The two methods have been plotted together in Figure 2-6 and Figure 2-7, as well as a comparison of peak flows in Table 2-4.

The two approaches to the Wensum inflow, yield similar peak values in low % AEP events but the ReFH2 produces lower peak flows in higher % AEP events. This shows that the growth curves used to create both flows are different but converge near the 1.0% and 0.1% AEP events. The two approaches show very different shapes, the ReFH2 approach shows a very smooth rising and falling limb. Whereas the other method shows a much flatter flow peak and longer period. This due to the hydrographs being extracted from the model and the influence of the downstream boundary is felt. Hence the oscillations at the start and end of the hydrograph.

The two approaches to the Yare inflow, show the opposite peak flow relationship to the Wensum. The Yare shows similar peak values in High % AEP events, and very different peak flows in low % AEP events. Both methods show similar shapes, except for the initial small "hump" in the model extracted flow curves.

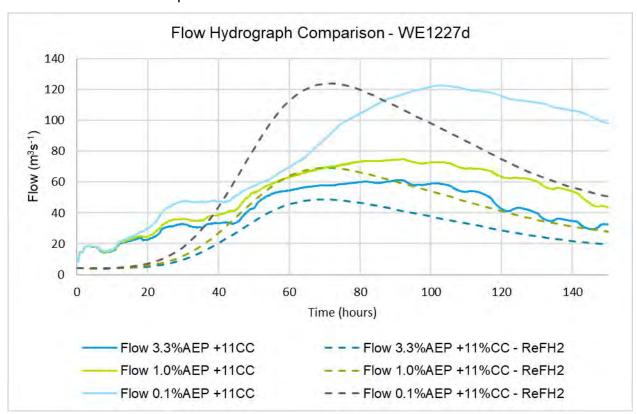


Figure 2-6: Model Flow Method Comparison - WE1227d

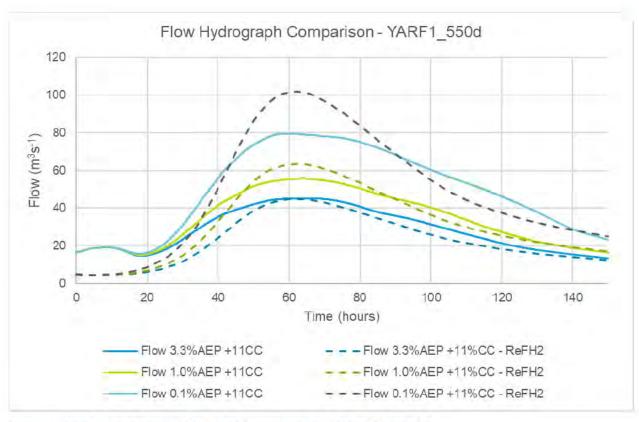


Figure 2-7: Model Flow Method Comparison - YARF1_550d

Table 2-4: Peak Flow comparison

% AEP	WE1227d Flows (m3s-1)		YARF1_550d Flows (m3s-1)		
	Model 2017	ReFH2 62h	Model 2017	ReFH2 62h	
3.30	55.04	43.83	40.70	40.36	
3.3 + 11%CC	61.09	48.66	45.18	44.80	
1.00	67.28	62.19	50.52	57.22	
1.0 + 11%CC	74.68	69.03	56.08	63.51	
0.10	110.33	111.44	71.72	91.79	
0.1 + 115CC	122.46	123.70	79.61	101.89	

2.4 Wensum Model - BESL Model

The truncated Wensum model is a 1D|2D model. Where the Wensum model blends into the BESL model there is water in the 2D Floodplain. The BESL model is 1D only, the water in the 2D floodplain must be inputted into the 1D model.

This has been achieved by using a TUFLOW Type SX 2d boundary condition on the border between the two models. The SX boundary intakes the water into the 2D floodplain and connects it to a 1D node, called YAN0726ND. YAN0726ND is represented as a 1D Head Time (HT) Boundary that inputs the 2D flow into the 1D BESL model. This ensure the mass balance is conserved. YAN0726ND is not rated to AEPs, as it is dependent on the movement of water in the 2D floodplain.

Figure 2-8: Wensum / BESL Model Border - SX Boundary Condition

2.5 BESL Inflows - Yare

The original BESL model covers a large area and contains many inflows. When the model was truncated the only inflows that remained are Yare_1 and Yare_2. These inflows are FEH QT boundaries and are identical because they contain the same FEH catchment descriptors. The model inflow peak values are shown in Table 2-5.

Table 2-5: BESL Inflows - Peak Flows (m3s-1)

Event	Yare 1 Peak Flow (m3s-1)	Yare 2 Peak Flow (m3s-1)
3.3% AEP	11.99	11.99
3.3% AEP +11%CC	13.30	13.30
1.0% AEP	16.85	16.85
1.0% AEP +11%CC	18.70	18.70
0.1% AEP	32.52	32.52
0.1%AEP +11%CC	36.10	36.10

2.6 BESL Downstream Boundary - Reedham

The downstream boundary is located 2.1km upstream of the village of Reedham, where the Yare meets the River Chet. The downstream boundary is a normal depth boundary to represent the tidal influence of the catchment.

The downstream boundary was calculated by running the original Jacobs and CH2M (2020) BESL model and extracting the stage-time series data at the Y10000d node. Inflows in the Jacobs and CH2M BESL model were updated to represent current climate change adjustments in the Broadlands River Management catchment. Table 2-6 shows the peak stage and Figure 2-9 show the stage-time data Y10000d for each event.

The events are detailed as "Fluvial %AEP | Tidal event ".

A fluvial 5% AEP event was run in place of a 3.3%AEP event. This is because the original model was not run for a 3.3% AEP event and due to the complex nature of the model hydrology it was not possible to create one.

Table 2-6: Peak Stage

Event	Peak Stage (mAOD)	
5.0% AEP MHWS	1.06	
5.0% AEP + 11%CC MHWS CC	1.60	
1.0% AEP MHWS	1.12	
1.0% AEP + 11%CC MHWS CC	1.63	
0.1% AEP MHWS	1.36	
0.1% AEP + 11%CC MHWS CC	1.84	

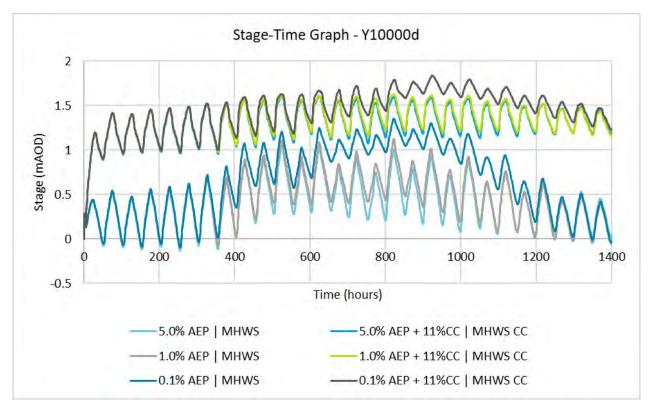


Figure 2-9: Stage-Time Graph - Y10000d

3 Model Performance

3.1 Overview

Sensitivity Testing is an essential part of the model build process. Sensitivity testing determines the impact of key model parameters on the model results and stability. The model parameters tested in this study are Manning's roughness and Downstream boundary level.

3.2 Model Sensitivity Analysis

Sensitivity to flow and downstream boundary undertaken as part of the modelling process. Further tests to be agreed as part of EA review process.

3.3 Model Stability

3.3.1 1D Model Convergence

Figure 3-1 and Figure 3-2 show the Flood Modeller iteration and convergence plots for both the 3.3% AEP + 11%CC and the 1% AEP +11%CC events. The 1D model shows poor convergence, requiring high numbers of iterations of to reach a solution.

The stabilities issues are caused by the tidal downstream boundary and the large 2D storage areas. The downstream boundary controls the model level and causes fluctuations in the model flow series. The large amount of water in the 2D floodplain is due to the vast low lying storage areas in the catchment. This water is slow moving and "sits" on the 1D/2D boundary creating small oscillations between the two domains.

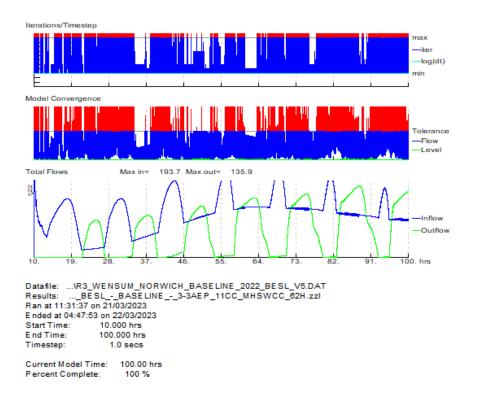


Figure 3-1: Model Stability Analysis - 3.3% AEP + 11%CC 1D Summary

Figure 3-2: Model Stability Analysis - 1.0% AEP + 11%CC 1D Summary

3.3.2 Model Stability Parameter Adjustments

In order improve model stability several 1D and 2D parameters have been adjusted. The parameters that have been changed from default are listed in Table 3-1. These values have been used in selective runs where model instability led to no solution being found.

Table 3-1: Model Stability Parameter Adjustments

Parameter	Default	Adjusted	Comment
Alpha (1D)	0.7	0.5	Alpha is an under-relaxation parameter. It determines the weighting of the result towards the previous iteration, therefore increasing its value towards 1 will improve mass conservation.
Theta (1D)	0.9	0.5	Theta is a Preissmann box weighting factor. A value of 1.0 gives a fully implicit numerical scheme. Allowed range 0.5-1.0
Pivotal Choice (1D)	0.1	0.5	Specifies the degree of matrix pivoting away from non-zero values. A value of zero would result in no solution being found. In "noisy" models this value may need adjusting where the matrix values are oscillating near zero.
Min/Max Iterations (1D)	3/11	6/18	The minimum and maximum number of iterations impacts the number of iterations in which the model will process to find a solution. It is recommended to change these values in conjunction with Alpha and Theta.
HX - A (Form Loss Coefficient) (2D)	0.0	0.5	Applies a form loss coefficient to the HX line at the specified location. This can be useful for 1D/2D models where additional energy losses are needed to model the flow between a river (1D) and the floodplain (2D).

3.3.3 Cumulative Mass Error

Another indication of model stability is cumulative mass error. Typically, during a stable model run the cumulative mass error will have a value of ±1%. Figure 3-3 shows the mass balance recorded during the model run for the 3.3% AEP +11%CC and 1% AEP + 11%CC events. Both events are within the EA recommended tolerance. The 1% AEP + 11%CC event shows a high initial spike in mass error due to high stage initial conditions; this causes water to immediately enter the 2D floodplain. Because this occurs at the start of the model, where there is little water present in the entire model, this represents a significant percentage causing a large spike.

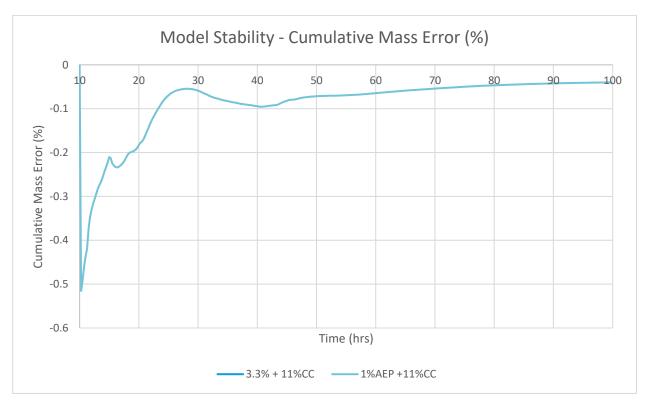


Figure 3-3: Model Stability Analysis - Cumulative Mass Error (%)

3.3.4 2D Volume

The output dVol measures the change in volume present in the 2D domain. Figure 3-4 shows the 2d volume recorded during the model run for the 3.3% AEP +11%CC and 1% AEP + 11%CC events. The volume mimics the time series of the tidal downstream boundary. The curves are gradual due to the slow movement of water between the 1D and 2D boundary.

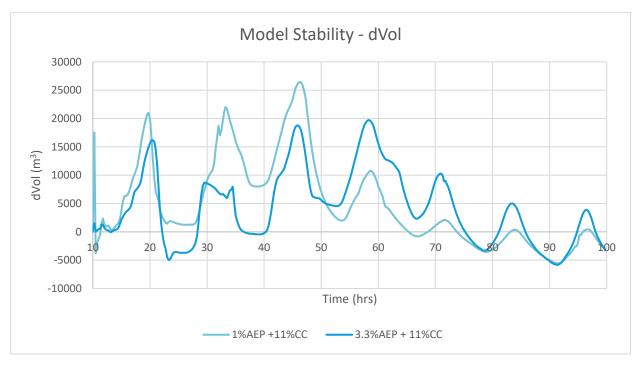


Figure 3-4: Model Stability Analysis - dVol

4 Model Files

4.1 1D Model Files

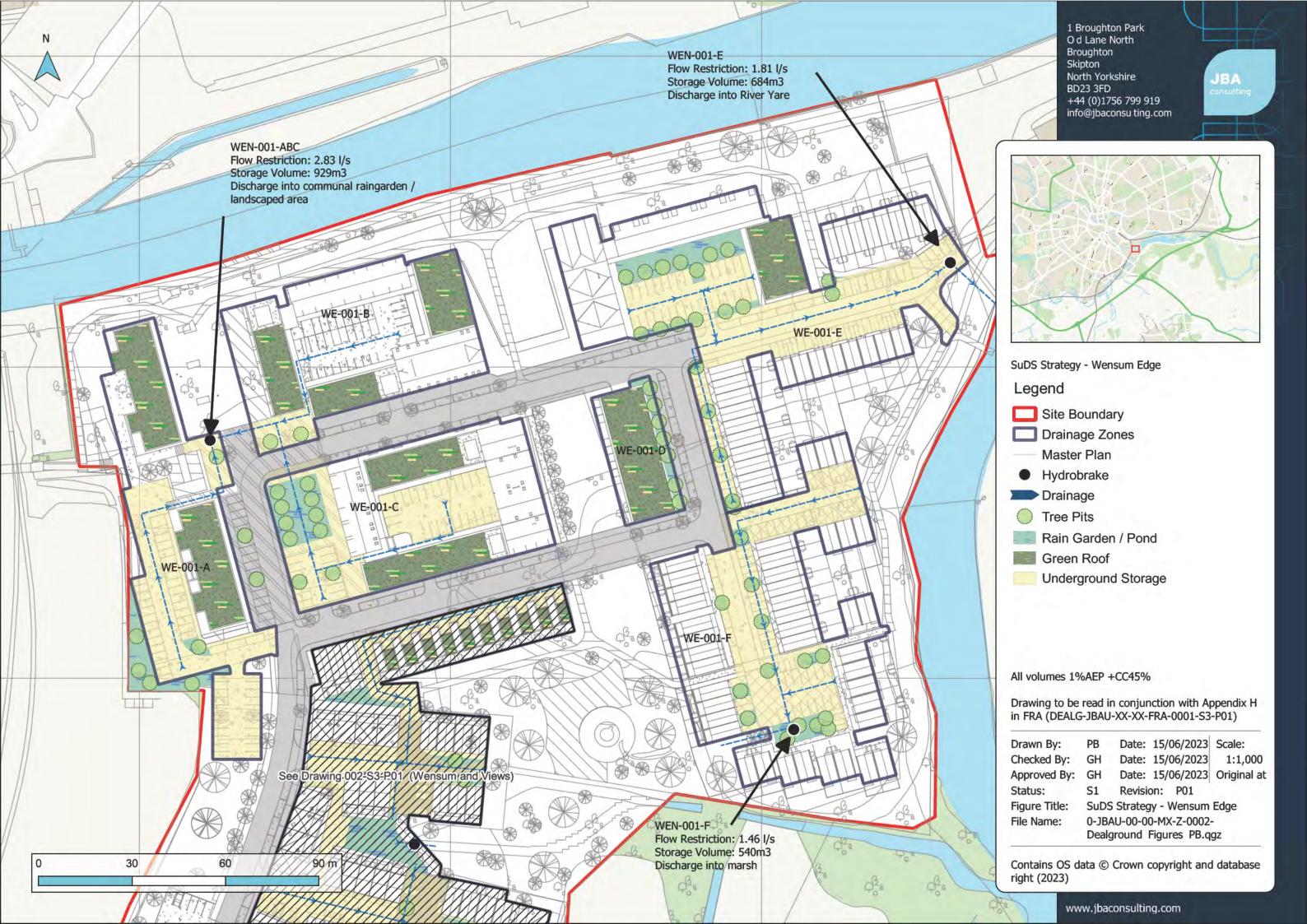
The core 1D Model files are shown in Table 4-1. The return period or AEP is represented by a place holder "X".

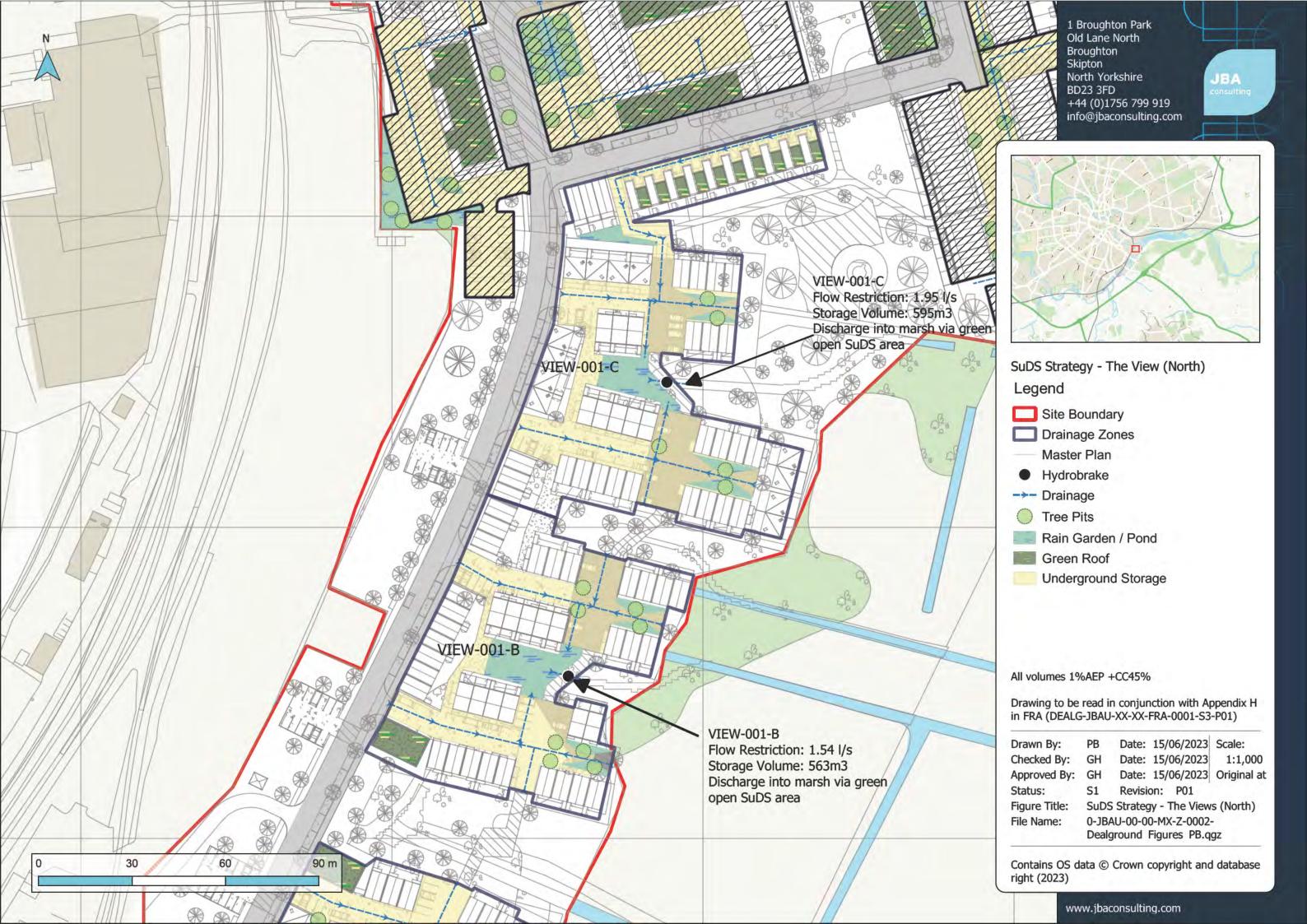
Table 4-1: 1D Model Files

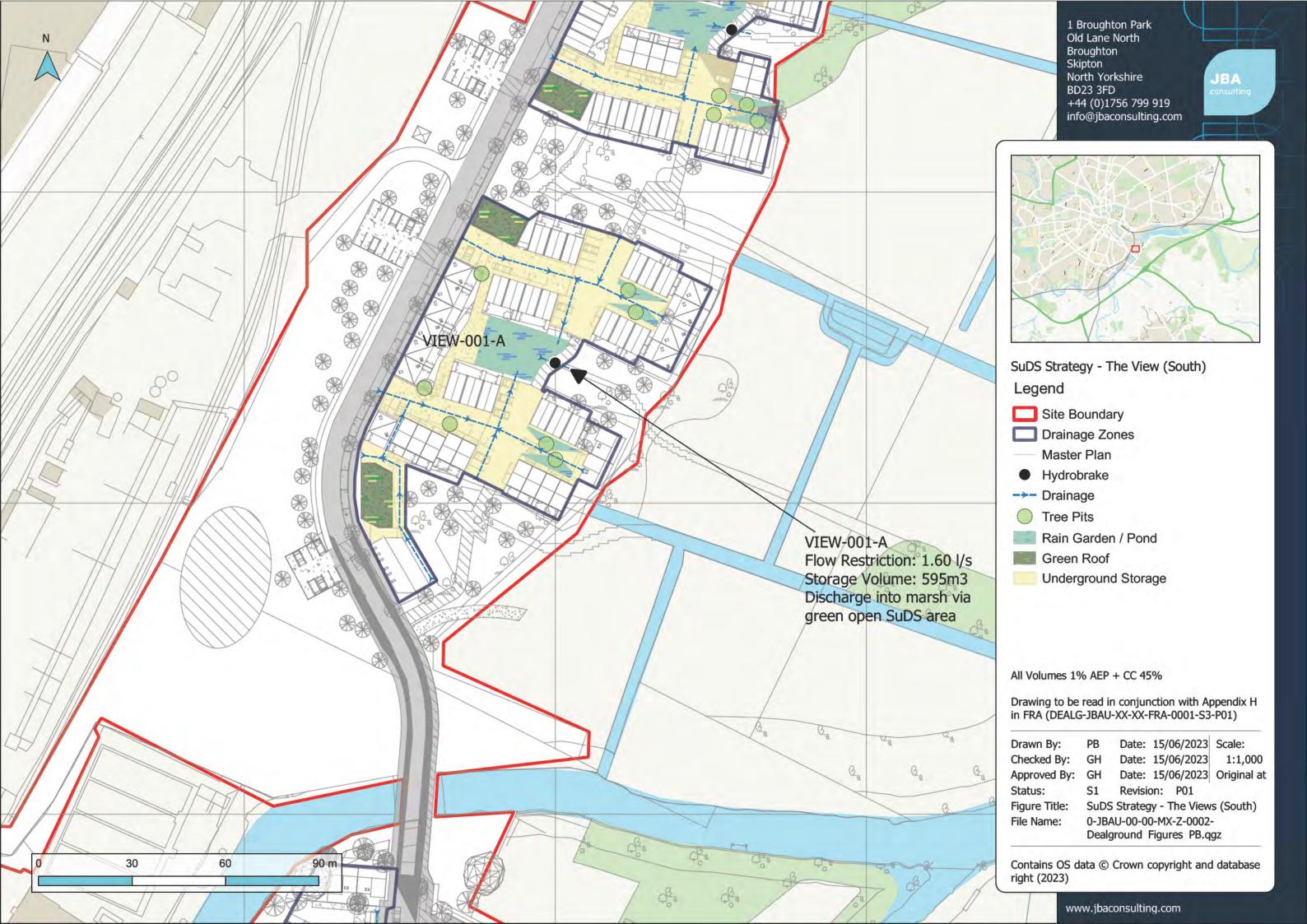
File type		File Name
Data File (.DAT)	Baseline	R4_Wensum_Norwich_BESL_ 2023_Baseline-001.dat
	Post-Development	R4_Wensum_Norwich_BESL_ 2023_MP_F_001-001.dat
Event file (.IED)	Wensum & Norwich Inflows	R3_"X"%AEP_NORWICH-62hSD
	BESL Inflows	Yare_"X"yr_47hr_PH0
	Downstream Boundary - Present Day	R3-Y10000d- "X"AEP_11CC_MHWSCC.ied
	Downstream Boundary - Climate Change	R3-Y10000d-"X"AEP_MHWS.ied
Initial conditions (.IIC)		R3_N_BESLMP_F_001_3- 3AEPCC-H-P-T-3h.iic
Results (.ZZL)	Baseline	R4_001_NORWICH_BESL _BASELINE_"X"AEP_MHSW(CC).zzl
	Post-Development	R4_001_NORWICH_BESL _MP_F_002_"X"AEP_MHSW(CC).zzl

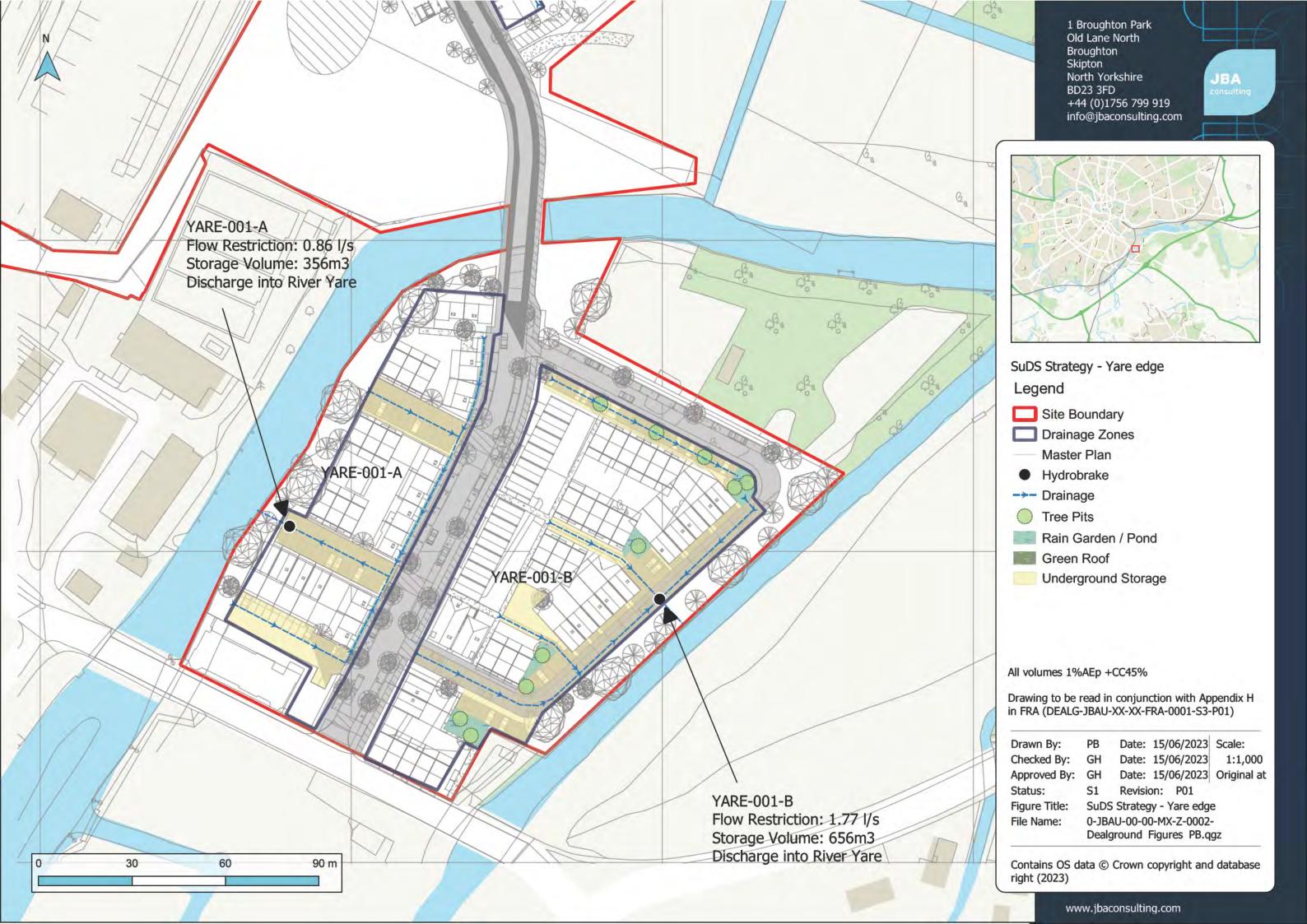
4.2 2D Model Files

The core 2D model files are shown in Table 4-2.


Table 4-2: 2D Model Files


File Type	File Name	
Tuflow Control file (.tcf)	R4_NORWICH_~s1~_~e1~_001.tcf	
Tuflow Boundary Controller (.tbc)	R4_Wensum_Norwich_2023.tbc	
Tuflow Geometry Controller (.tbc)	R4_Wensum_Norwich_2023.tgc	
Tuflow Material File (.tmf)	R4_Wensum_Norwich_2023.tmf	
Digital terrain Model (DTM)	Norwich_DTM-2021_Merge.asc	




H SuDS

H.1 General Arrangement Drawings

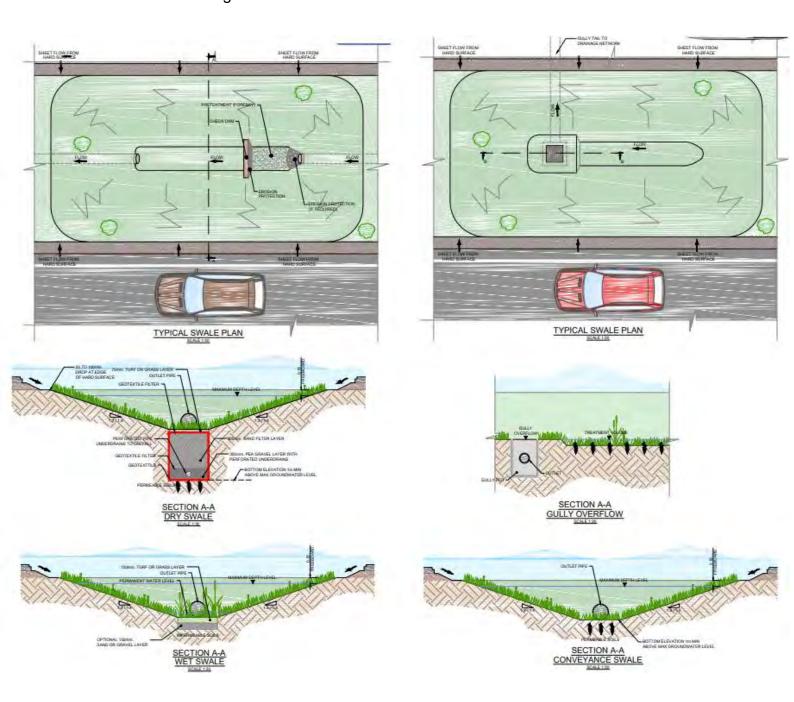
SUDS - MicroDrainage Summary Table

Project Title: Project Code: Dealground 2022-0896 15/06/2023 Adam Odell Date: Prepared by: Reviewed by: Gavin Hodson BIM reference: DEALG-XX-XX-SUDS-TBL-001-S3-P01 This table contains estimated storage depths, volumes and critical storm durations for 1% AEP + CC45% and 3.3% AEP + 45% CC.

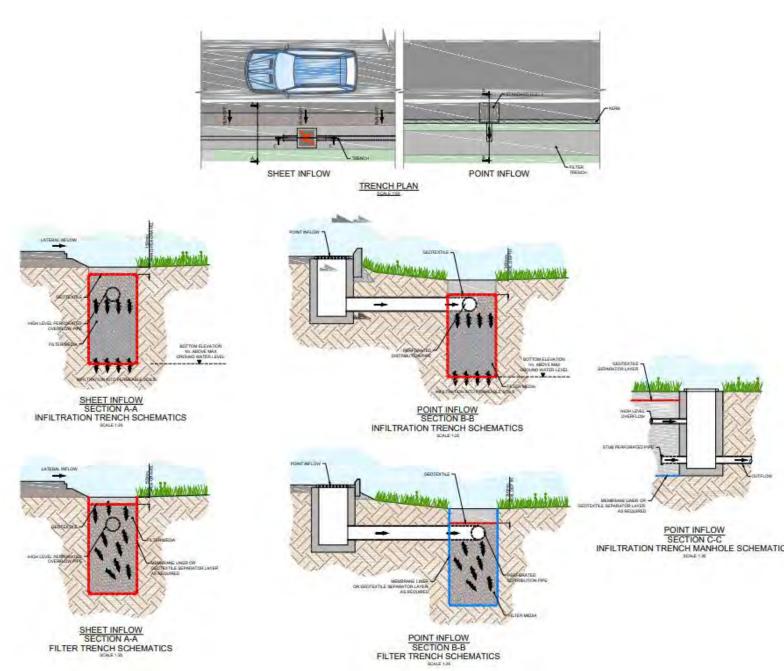
Calculations were completed using MicroDrainage Version 2020.1

						Mark Assessment		3.33% AEP +	CC45%		1% AEP + CC4	45%
Area		ban Creep Adjustion	Discharge rate (l/s)	Urban creep Justification	Available area m²	Indicative Ground level: (mAOD)	s Volume	Storage Depth (m)	Critical Storm (mins)	Volume m ^a	Storage Depth (m)	Critical Storm (mins)
Wensum Edge										1		
WEN-001-ABC	0.85	n/a	221	No (Whole area considered impermeable)	3234,00	3	641.1	0 668	1440	928.9	0.986	1440
WEN-001-D	0.09	n/a	0.22	No (Whole area considered impermeable)								
WEN-001-E	0.63	0.70	181	Yes (residential area with green space)	2718.00	3	491.5	0 603	2880	684.2	0.84	2880
WEN-001-F	0.51	0.56	1.46	Yes (residential area with green space)	2037.00	32	389.1	0 683	2880	540.1	0 885	2880
The Views							1					
V EW-001-A	0.61	n/a	1.60	No (Whole area considered impermeable)	2425.00	3	428.2	0 589	2880	595.2	0 819	2880
V EW-001-B	0.59	n/a	1.53	No (Whole area considered impermeable)	1953.00	3	405.5	0.693	2880	563.1	0 963	2880
V EW-001-C	0.75	n/a	195	No (Whole area considered impermeable)	2665.00	3	515.5	0 643	2880	719	0 899	2880
Yare Edge					450000		PERSONAL PROPERTY.		10000			-
YARE-001-A	0.33	0.36	0.86	Yes (residential area with green space)	1281.927	3	258.7	0 684	2880	356	0 924	2880
YARE-001-B	0.62	0.68	1.77	Yes (residential area with green space)	2307.652	3	472.7	0.67	2880	656.6	0.931	2880

Additional Notes

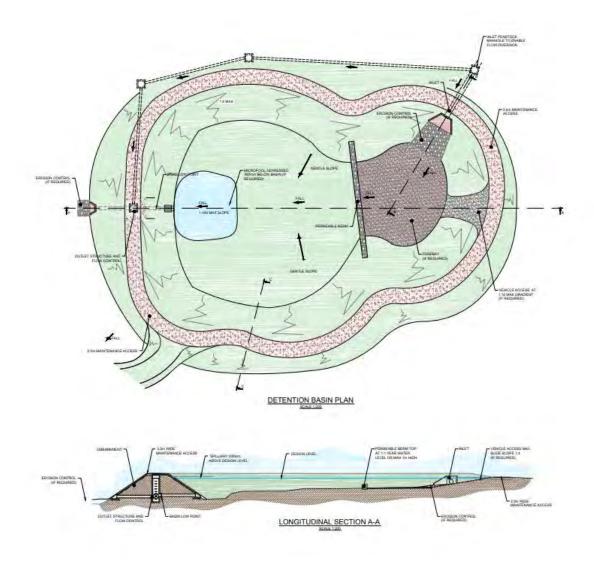

- 1. Full MicroDrainage printouts are provided in Appedix H of the FRA and Surface Water Management Strategy document
- Table should be read in conjuction with the following drawings:
 a) DEALG-XX-XX-SUDS-DRG-001-S3-P01 (Wensum Edge SUDS Strategy)
 b) DEALG-XX-XX-SUDS-DRG-002-S3-P01 (The Views North SUDS Strategy)

 - c) DEALG-XX-XX-SUDS-DRG-003-S3-P01 (The Views South SUDS Strategy) d) DEALG-XX-XX-SUDS-DRG-004-S3-P01 (Yare Edge SUDS Strategy)
- 3) Volumes calculated using source control module and can be considered convservative as additional storage provided in green space is currently not confirmed
- 4) Runoff rates based on 2.6 l/s/ha


H.2 Typical details

Swales are to be sued across the proposed development (Yare Edge and adopted highway) in both traditional and engineered form. H2-A and H2-B demonstrates how swales could be configured.

H2-A - Typical swale details



H2-B - Typical filter strip / Engineered swale details

Within the Views the communal areas will also provide a SuDS benefitting acting as a raingarden / detention basin. Permeable paving will be connected to these features before discharging into the CWS. H2-C provides an example of a detention basin. This feature will be enhanced with landscape and planting in the setting of the Views.

H2-C - Typical Detention basin details

Other SuDS elements such as Green roofs and underground storage will be provided following feedback from LLFA.

H.3 Storage Calculations

JBA Consulting		Page 1
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:36 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 3455 minutes.

Storm Max Max Max Max Max Max Event Level Depth Infiltration Control Overflow Σ Outflow (m) (m) (1/s) (1/s) (1/s)	Max Volume (m ³)	Status
15 min Summer 2.341 0.341 0.0 1.5 0.0 1.3	247.9	OK
30 min Summer 2.381 0.381 0.0 1.5 0.0 1.	277.0	O K
60 min Summer 2.425 0.425 0.0 1.5 0.0 1.5	308.5	OK
120 min Summer 2.471 0.471 0.0 1.5 0.0 1.	342.0	OK
180 min Summer 2.498 0.498 0.0 1.5 0.0 1.	361.9	OK
240 min Summer 2.517 0.517 0.0 1.5 0.0 1.	376.0	OK
360 min Summer 2.543 0.543 0.0 1.5 0.0 1.	394.9	OK
480 min Summer 2.560 0.560 0.0 1.5 0.0 1.	407.1	OK
600 min Summer 2.572 0.572 0.0 1.5 0.0 1.5	415.5	OK
720 min Summer 2.580 0.580 0.0 1.5 0.0 1.5	421.2	OK
960 min Summer 2.615 0.615 0.0 1.5 0.0 1.5	446.7	OK
1440 min Summer 2.658 0.658 0.0 1.5 0.0 1.5	478.1	OK
2160 min Summer 2.688 0.688 0.0 1.5 0.0 1.	500.1	OK
2880 min Summer 2.697 0.697 0.0 1.5 0.0 1.	506.8	OK
4320 min Summer 2.647 0.647 0.0 1.5 0.0 1.	469.9	OK
5760 min Summer 2.602 0.602 0.0 1.5 0.0 1.	437.7	OK
7200 min Summer 2.561 0.561 0.0 1.5 0.0 1.	407.8	OK
8640 min Summer 2.519 0.519 0.0 1.5 0.0 1.	377.0	OK
10080 min Summer 2.478 0.478 0.0 1.5 0.0 1.5	347.3	OK
15 min Winter 2.389 0.389 0.0 1.5 0.0 1.5	282.7	OK

		Stor Even		Rain (mm/hr)	Volume	Discharge Volume	Volume	Time-Peak (mins)	
					(m ³)	(m ³)	(m ³)		
	15	min	Summer	228.747	0.0	125.6	0.0	27	
	30	min	Summer	127.487	0.0	125.1	0.0	42	
	60	min	Summer	71.052	0.0	244.8	0.0	72	
	120	min	Summer	39.599	0.0	244.8	0.0	130	
	180	min	Summer	28.130	0.0	241.7	0.0	190	
	240	min	Summer	22.070	0.0	237.9	0.0	250	
	360	min	Summer	15.678	0.0	230.4	0.0	370	
	480	min	Summer	12.300	0.0	224.4	0.0	488	
	600	min	Summer	10.190	0.0	219.4	0.0	608	
	720	min	Summer	8.738	0.0	215.0	0.0	728	
	960	min	Summer	7.123	0.0	206.0	0.0	966	
1	440	min	Summer	5.340	0.0	197.1	0.0	1444	
2	160	min	Summer	4.004	0.0	425.6	0.0	2160	
2	880	min	Summer	3.264	0.0	409.7	0.0	2740	
4	320	min	Summer	2.296	0.0	376.1	0.0	3412	
5	760	min	Summer	1.789	0.0	732.1	0.0	4152	
7	200	min	Summer	1.474	0.0	741.7	0.0	4976	
8	640	min	Summer	1.258	0.0	743.3	0.0	5792	
10	080	min	Summer	1.101	0.0	729.9	0.0	6464	
	15	min	Winter	228.747	0.0	125.5	0.0	27	

©1982-2020 Innovyze

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:36 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Overflow E	Max Outflow	Max Volume	Status
		(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min Wint	er 2.435	0.435	0.0	1.5	0.0	1.5	315.8	ОК
60	min Wint	er 2.484	0.484	0.0	1.5	0.0	1.5	351.8	OK
120	min Wint	er 2.537	0.537	0.0	1.5	0.0	1.5	390.4	OK
180	min Wint	er 2.569	0.569	0.0	1.5	0.0	1.5	413.5	O K
240	min Wint	er 2.591	0.591	0.0	1.5	0.0	1.5	429.8	O K
360	min Wint	er 2.622	0.622	0.0	1.5	0.0	1.5	451.8	O K
480	min Wint	er 2.642	0.642	0.0	1.5	0.0	1.5	466.3	OK
600	min Wint	er 2.655	0.655	0.0	1.5	0.0	1.5	476.3	OK
720	min Wint	er 2.665	0.665	0.0	1.5	0.0	1.5	483.5	OK
960	min Wint	er 2.707	0.707	0.0	1.5	0.0	1.5	513.6	Flood Risk
1440	min Wint	er 2.760	0.760	0.0	1.5	0.0	1.5	552.3	Flood Risk
2160	min Wint	er 2.801	0.801	0.0	1.5	0.0	1.5	582.5	Flood Risk
2880	min Wint	er 2.819	0.819	0.0	1.5	0.0	1.5	595.2	Flood Risk
4320	min Wint	er 2.755	0.755	0.0	1.5	0.0	1.5	548.8	Flood Risk
5760	min Wint	er 2.702	0.702	0.0	1.5	0.0	1.5	509.8	Flood Risk
7200	min Wint	er 2.649	0.649	0.0	1.5	0.0	1.5	471.6	O K
8640	min Wint	er 2.597	0.597	0.0	1.5	0.0	1.5	433.7	O K
10080	min Wint	er 2.543	0.543	0.0	1.5	0.0	1.5	394.8	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)			
	30	min	Winter	127.487	0.0	123.7	0.0	41	
	60	min	Winter	71.052	0.0	245.8	0.0	70	
	120	min	Winter	39.599	0.0	238.6	0.0	130	
	180	min	Winter	28.130	0.0	232.3	0.0	188	
	240	min	Winter	22.070	0.0	227.8	0.0	246	
	360	min	Winter	15.678	0.0	221.5	0.0	364	
	480	min	Winter	12.300	0.0	217.1	0.0	482	
	600	min	Winter	10.190	0.0	213.7	0.0	598	
	720	min	Winter	8.738	0.0	210.8	0.0	716	
	960	min	Winter	7.123	0.0	208.0	0.0	950	
	1440	min	Winter	5.340	0.0	209.6	0.0	1414	
	2160	min	Winter	4.004	0.0	431.2	0.0	2096	
	2880	min	Winter	3.264	0.0	423.7	0.0	2748	
	4320	min	Winter	2.296	0.0	401.4	0.0	3588	
	5760	min	Winter	1.789	0.0	822.3	0.0	4432	
	7200	min	Winter	1.474	0.0	809.2	0.0	5336	
	8640	min	Winter	1.258	0.0	774.6	0.0	6304	
1	0080	min	Winter	1.101	0.0	745.6	0.0	7176	

JBA Consulting		Page 3		
The Library	71			
St Philips Courtyard				
Coleshill B46 3AD		Micro		
Date 14/06/2023 11:36	Designed by jflow_atherstone	Drainage		
File 2022-0896-VIEWS-001.SRCX	Checked by	Drainage		
Micro Drainage	Source Control 2020.1.3			

Rainfall Details

Rainfall Model	FEH
Return Period (years)	100
FEH Rainfall Version	1999
Site Location GE	B 624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

Total Area (ha) 0.610

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.203	4	8	0.203	8	12	0.203

JBA Consulting		Page 4
The Library St Philips Courtyard Coleshill B46 3AD		
Date 14/06/2023 11:36 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Micro Drainage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	32.3
Membrane Percolation (mm/hr)	1000	Length (m)	75.0
Max Percolation (1/s)	672.9	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0060-1600-1000-1600 Design Head (m) 1.000 Design Flow (1/s) 1.6 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 60 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control		Points	Head (m)	Flow (1/s)
	Design Point	(Calculated)	1.000	1.6
		Flush-Flor	0.262	1.5
		Kick-Flo®	0.531	1.2
	Mean Flow ove	er Head Range	-	1.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.3	1.200	1.7	3.000	2.6	7.000	3.9
0.200	1.5	1.400	1.9	3.500	2.8	7.500	4.0
0.300	1.5	1.600	2.0	4.000	3.0	8.000	4.2
0.400	1.4	1.800	2.1	4.500	3.2	8.500	4.3
0.500	1.3	2.000	2.2	5.000	3.3	9.000	4.4
0.600	1.3	2.200	2.3	5.500	3.5	9.500	4.5
0.800	1.4	2.400	2.4	6.000	3.6		
1,000	1.6	2.600	2.5	6.500	3.8		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

©1982-2020 Innovyze

JBA Consulting		Page 1
The Library		
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 11:51	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uraniaye
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 3284 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Sta	tus
15	min :	Summer	2.413	0.413	0.0	1.5	0.0	1.5	241.6		OK
30	min :	Summer	2.461	0.461	0.0	1.5	0.0	1.5	269.8		OK
60	min :	Summer	2.513	0.513	0.0	1.5	0.0	1.5	300.4		OK
120	min :	Summer	2.569	0.569	0.0	1.5	0.0	1.5	332.7		OK
180	min :	Summer	2.602	0.602	0.0	1.5	0.0	1.5	351.9		OK
240	min :	Summer	2.624	0.624	0.0	1.5	0.0	1.5	365.2		OK
360	min :	Summer	2.654	0.654	0.0	1.5	0.0	1.5	382.9		OK
480	min :	Summer	2.673	0.673	0.0	1.5	0.0	1.5	394.0		OK
600	min :	Summer	2.686	0.686	0.0	1.5	0.0	1.5	401.4		OK
720	min :	Summer	2.694	0.694	0.0	1.5	0.0	1.5	406.3		OK
960	min :	Summer	2.734	0.734	0.0	1.5	0.0	1.5	429.2	Flood	Risk
1440	min :	Summer	2.781	0.781	0.0	1.5	0.0	1.5	456.7	Flood	Risk
2160	min :	Summer	2.810	0.810	0.0	1.5	0.0	1.5	473.9	Flood	Rísk
2880	min :	Summer	2.818	0.818	0.0	1.5	0.0	1.5	478.5	Flood	Risk
4320	min :	Summer	2.756	0.756	0.0	1.5	0.0	1.5	442.3	Flood	Risk
5760	min :	Summer	2.703	0.703	0.0	1.5	0.0	1.5	411.4	Flood	Risk
7200	min :	Summer	2.655	0.655	0.0	1.5	0.0	1.5	383.4		OK
8640	min :	Summer	2.611	0.611	0.0	1.5	0.0	1.5	357.4		OK
10080	min ;	Summer	2.568	0.568	0.0	1.5	0.0	1.5	332.4		OK
15	min I	Winter	2.471	0.471	0.0	1.5	0.0	1.5	275.4		OK

Storm Event				Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
	15	min	Summer	228.747	0.0	124.1	0.0	27	
	30	min	Summer	127.487	0.0	121.9	0.0	42	
	60	min	Summer	71.052	0.0	240.4	0.0	72	
	120	min	Summer	39.599	0.0	234.7	0.0	132	
	180	min	Summer	28.130	0.0	230.0	0.0	190	
	240	min	Summer	22.070	0.0	226.5	0.0	250	
	360	min	Summer	15.678	0.0	221.3	0.0	370	
	480	min	Summer	12.300	0.0	217.4	0.0	488	
	600	min	Summer	10.190	0.0	214.3	0.0	608	
	720	min	Summer	8.738	0.0	211.5	0.0	728	
	960	min	Summer	7.123	0.0	208.4	0.0	966	
	1440	min	Summer	5.340	0.0	209.5	0.0	1444	
	2160	min	Summer	4.004	0.0	434.2	0.0	2160	
	2880	min	Summer	3.264	0.0	422.8	0.0	2564	
	4320	min	Summer	2.296	0.0	393.6	0.0	3280	
	5760	min	Summer	1.789	0.0	719.5	0.0	4040	
	7200	min	Summer	1.474	0.0	732.1	0.0	4896	
	8640	min	Summer	1.258	0.0	733.9	0.0	5712	
	10080	min	Summer	1.101	0.0	712.8	0.0	6560	
	15	min	Winter	228.747	0.0	121.9	0.0	27	

©1982-2020 Innovyze

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:51 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone	Drainage
Micro Drainage	Checked by Source Control 2020.1.3	

	Storm	Max	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Overflow E	C Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min Wint	er 2.526	0.526	0.0	1.5	0.0	1.5	307.4	ОК
60	min Wint	er 2.585	0.585	0.0	1.5	0.0	1.5	342.2	OK
120	min Wint	er 2.648	0.648	0.0	1.5	0.0	1.5	379.2	O K
180	min Wint	er 2.686	0.686	0.0	1.5	0.0	1.5	401.3	O K
240	min Wint	er 2.712	0.712	0.0	1.5	0.0	1.5	416.7	Flood Risk
360	min Wint	er 2.748	0.748	0.0	1.5	0.0	1.5	437.4	Flood Risk
480	min Wint	er 2.771	0.771	0.0	1.5	0.0	1.5	450.7	Flood Risk
600	min Wint	er 2.786	0.786	0.0	1.5	0.0	1.5	459.9	Flood Risk
720	min Wint	er 2.797	0.797	0.0	1.5	0.0	1.5	466.2	Flood Risk
960	min Wint	er 2.844	0.844	0.0	1.5	0.0	1.5	493.9	Flood Risk
1440	min Wint	er 2.904	0.904	0.0	1.5	0.0	1.5	528.7	Flood Risk
2160	min Wint	er 2.947	0.947	0.0	1.5	0.0	1.5	554.2	Flood Risk
2880	min Wint	er 2.963	0.963	0.0	1.6	0.0	1.6	563.1	Flood Risk
4320	min Wint	er 2.884	0.884	0.0	1.5	0.0	1.5	517.4	Flood Risk
5760	min Wint	er 2.818	0.818	0.0	1.5	0.0	1.5	478.7	Flood Risk
7200	min Wint	er 2.755	0.755	0.0	1.5	0.0	1.5	441.4	Flood Risk
8640	min Wint	er 2.693	0.693	0.0	1.5	0.0	1.5	405.7	O K
10080	min Wint	er 2.634	0.634	0.0	1.5	0.0	1.5	371.0	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)		
3	0 min	Winter	127.487	0.0	116.8	0.0	41	
6	0 min	Winter	71.052	0.0	235.0	0.0	70	
12	0 min	Winter	39.599	0.0	228.3	0.0	130	
18	0 min	Winter	28.130	0.0	224.7	0.0	188	
24	0 min	Winter	22.070	0.0	222.4	0.0	246	
36	0 min	Winter	15.678	0.0	219.4	0.0	364	
48	0 min	Winter	12.300	0.0	217.7	0.0	482	
60	0 min	Winter	10.190	0.0	216.8	0.0	598	
72	0 min	Winter	8.738	0.0	216.3	0.0	716	
96	0 min	Winter	7.123	0.0	220.4	0.0	948	
144	0 min	Winter	5.340	0.0	223.1	0.0	1408	
216	0 min	Winter	4.004	0.0	446.4	0.0	2080	
288	0 min	Winter	3.264	0.0	445.8	0.0	2736	
432	0 min	Winter	2.296	0.0	423.0	0.0	3424	
576	0 min	Winter	1.789	0.0	814.5	0.0	4336	
720	0 min	Winter	1.474	0.0	816.2	0.0	5264	
864	0 min	Winter	1.258	0.0	784.0	0.0	6216	
1008	0 min	Winter	1.101	0.0	741.1	0.0	7072	

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:51	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	Endir radje
Micro Drainage	Source Control 2020.1.3	

Rainfall Details

Rainfall Model						FEH
Return Period (years)						100
FEH Rainfall Version						1999
Site Location 6	SB	624550	306900	TG	24550	06900
C (1km)					5-	-0.024
D1 (1km)						0.267
D2 (1km)						0.400
D3 (1km)						0.243
E (1km)						0.308
F (1km)						2.475
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						0.750
Cv (Winter)						0.850
Shortest Storm (mins)						15
Longest Storm (mins)						10080
Climate Change %						+45

Time Area Diagram

Total Area (ha) 0.590

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.197	4	8	0.197	8	12	0.197

JBA Consulting		Page 4
The Library	1 1	
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 11:51	Designed by jflow_atherstone	Desinage
File 2022-0896-VIEWS-001.SRCX	Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	4

Model Details

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	26.0
Membrane Percolation (mm/hr)	1000	Length (m)	75.0
Max Percolation (1/s)	541.7	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0059-1590-1000-1590 Design Head (m) 1.000 Design Flow (1/s) 1.6 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 59 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.000	1.6
	Flush-Flor	0.262	1.5
	Kick-Flo®	0.531	1.2
Mean Flow ove	r Head Range		1.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.3	1.200	1.7	3.000	2.6	7.000	3.9
0.200	1.5	1.400	1.9	3.500	2.8	7.500	4.0
0.300	1.5	1.600	2.0	4.000	3.0	8.000	4.2
0.400	1.4	1.800	2.1	4.500	3.2	8.500	4.3
0.500	1.3	2.000	2.2	5.000	3.3	9.000	4.4
0.600	1.3	2.200	2.3	5.500	3.5	9.500	4.5
0.800	1.4	2.400	2.4	6.000	3.6		
1,000	1.6	2.600	2.5	6.500	3.8		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

©1982-2020 Innovyze

JBA Consulting		Page 1
The Library		
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:46	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uraniaye
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 313% minutes.

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Stat	tus
min Su	ımmer	2.383	0.383	0.0	1.9	0.0	1.9	306.2		OK
min Su	ummer	2.427	0.427	0.0	1.9	0.0	1.9	341.9		OK
min Su	ummer	2.476	0.476	0.0	1.9	0.0	1.9	380.5		OK
min Su	ummer	2.527	0.527	0.0	1.9	0.0	1.9	421.3		OK
min Su	ımmer	2.557	0.557	0.0	1.9	0.0	1.9	445.5		OK
min Su	ummer	2.578	0.578	0.0	1.9	0.0	1.9	462.4		OK
min Su	ummer	2.606	0.606	0.0	1.9	0.0	1.9	485.1		OK
min Su	ummer	2.624	0.624	0.0	1.9	0.0	1.9	499.5		OK
min Su	ummer	2.637	0.637	0.0	1.9	0.0	1.9	509.2		OK
min Su	ummer	2.645	0.645	0.0	1.9	0.0	1.9	515.7		OK
min Su	ummer	2.682	0.682	0.0	1.9	0.0	1.9	545.8		OK
min Su	ummer	2.728	0.728	0.0	1.9	0.0	1.9	582.1	Flood	Risk
min Su	ummer	2.757	0.757	0.0	1.9	0.0	1.9	605.6	Flood	Rísk
min Su	ummer	2.765	0.765	0.0	1.9	0.0	1.9	611.7	Flood	Risk
min Su	ummer	2.706	0.706	0.0	1.9	0.0	1.9	564.5	Flood	Risk
min Su	ummer	2.654	0.654	0.0	1.9	0.0	1.9	522.9		OK
min Su	ummer	2.604	0.604	0.0	1.9	0.0	1.9	483.0		OK
min Su	ummer	2.552	0.552	0.0	1.9	0.0	1.9	441.6		OK
min Su	ummer	2.507	0.507	0.0	1.9	0.0	1.9	405.3		OK
mín Wi	nter	2.436	0.436	0.0	1.9	0.0	1.9	349.0		OK
	min Si	min Summer	### Breent Level (m) min Summer 2.383 min Summer 2.427 min Summer 2.527 min Summer 2.557 min Summer 2.606 min Summer 2.624 min Summer 2.637 min Summer 2.645 min Summer 2.682 min Summer 2.728 min Summer 2.728 min Summer 2.757 min Summer 2.757 min Summer 2.765 min Summer 2.765 min Summer 2.765 min Summer 2.654 min Summer 2.654 min Summer 2.652 min Summer 2.552 min Summer 2.552 min Summer 2.552 min Summer 2.557	Event Level (m) Depth (m) min Summer 2.383 0.383 min Summer 2.427 0.427 min Summer 2.476 0.476 min Summer 2.527 0.527 min Summer 2.578 0.578 min Summer 2.606 0.606 min Summer 2.624 0.624 min Summer 2.637 0.637 min Summer 2.682 0.682 min Summer 2.728 0.728 min Summer 2.757 0.757 min Summer 2.765 0.765 min Summer 2.706 0.706 min Summer 2.706 0.706 min Summer 2.654 0.654 min Summer 2.604 0.604	Event Level (m) Depth (m) Infiltration (1/s) min Summer 2.383 0.383 0.0 min Summer 2.427 0.427 0.0 min Summer 2.476 0.476 0.0 min Summer 2.527 0.527 0.0 min Summer 2.557 0.557 0.0 min Summer 2.578 0.578 0.0 min Summer 2.604 0.604 0.0 min Summer 2.624 0.624 0.0 min Summer 2.637 0.637 0.0 min Summer 2.645 0.645 0.0 min Summer 2.728 0.728 0.0 min Summer 2.757 0.757 0.0 min Summer 2.765 0.757 0.0 min Summer 2.765 0.765 0.0 min Summer 2.654	Event Level (m) Depth (m) Infiltration (1/s) Control (1/s) min Summer 2.383 0.383 0.0 1.9 min Summer 2.427 0.427 0.0 1.9 min Summer 2.476 0.476 0.0 1.9 min Summer 2.527 0.527 0.0 1.9 min Summer 2.557 0.557 0.0 1.9 min Summer 2.578 0.578 0.0 1.9 min Summer 2.606 0.606 0.0 1.9 min Summer 2.624 0.624 0.0 1.9 min Summer 2.637 0.637 0.0 1.9 min Summer 2.645 0.645 0.0 1.9 min Summer 2.728 0.728 0.0 1.9 min Summer 2.757 0.757 0.0 1.9 min Summer	Event Level (m) Depth (m) Infiltration (1/s) Control (1/s) Overflow (1/s) min Summer Summer 2.427 0.383 0.0 1.9 0.0 min Summer Summer 2.476 0.476 0.0 1.9 0.0 min Summer 2.527 0.527 0.0 1.9 0.0 min Summer 2.557 0.557 0.0 1.9 0.0 min Summer 2.578 0.578 0.0 1.9 0.0 min Summer 2.606 0.606 0.0 1.9 0.0 min Summer 2.637 0.637 0.0 1.9 0.0 min Summer 2.645 0.645 0.0 1.9 0.0 min Summer 2.6682 0.645 0.0 1.9 0.0 min Summer 2.728 0.728 0.0 1.9 0.0 min Summer 2.757 0.757 0.0 1.9 0.0 min Summer 2.765 0.765 0.0 1.9 0.0 min Summer 2.765 0.765 0.0 1.9 0.0 min Su	Name Summer Sum	Event Level (m) Depth (m) Infiltration (1/s) Control (1/s) Volume (1/s)	Event Level (m) Depth (m) Infiltration (1/s) Control (1/s) E Outflow (1/s) Volume (m) min Summer 2.383 0.383 0.00 1.9 0.0 1.9 306.2 min Summer 2.427 0.427 0.0 1.9 0.0 1.9 341.9 min Summer 2.476 0.476 0.0 1.9 0.0 1.9 380.5 min Summer 2.527 0.557 0.0 1.9 0.0 1.9 421.3 min Summer 2.578 0.578 0.0 1.9 0.0 1.9 462.4 min Summer 2.606 0.606 0.0 1.9 0.0 1.9 485.1 min Summer 2.624 0.624 0.0 1.9 0.0 1.9 499.5 min Summer 2.637 0.637 0.0 1.9 0.0 1.9 509.2 min Summer 2.624 0.624 0.0 1.9 0.0 1.9 555.7 <t< td=""></t<>

Storm Event			Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
15	min	Summer	228.747	0.0	165.9	0.0	27	
30	min	Summer	127.487	0.0	165.6	0.0	42	
60	min	Summer	71.052	0.0	320.4	0.0	72	
120	min	Summer	39.599	0.0	323.0	0.0	130	
180	min	Summer	28.130	0.0	320.1	0.0	190	
240	min	Summer	22.070	0.0	316.0	0.0	250	
360	min	Summer	15.678	0.0	306.9	0.0	370	
480	min	Summer	12.300	0.0	299.1	0.0	488	
600	min	Summer	10.190	0.0	292.5	0.0	608	
720	min	Summer	8.738	0.0	286.8	0.0	728	
960	min	Summer	7.123	0.0	274.2	0.0	966	
1440	min	Summer	5.340	0.0	260.1	0.0	1444	
2160	min	Summer	4.004	0.0	565.4	0.0	2160	
2880	min	Summer	3.264	0.0	543.2	0.0	2628	
4320	min	Summer	2.296	0.0	496.2	0.0	3332	
5760	min	Summer	1.789	0.0	909.8	0.0	4096	
7200	min	Summer	1.474	0.0	927.2	0.0	4904	
8640	min	Summer	1.258	0.0	938.7	0.0	5624	
10080	min	Summer	1.101	0.0	939.5	0.0	6368	
15	min	Winter	228.747	0.0	166.2	0.0	27	

©1982-2020 Innovyze

JBA Consulting	Page 2			
The Library St Philips Courtyard				
Coleshill B46 3AD Date 14/06/2023 13:46	Designed by jflow atherstone	Micro		
File 2022-0896-VIEWS-001.SRCX	Checked by	Drainage		
Micro Drainage	Source Control 2020.1.3			

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Winte	r 2.487	0.487	0.0	1.9	0.0	1.9	389.7	OK
60	min Winte	r 2.542	0.542	0.0	1.9	0.0	1.9	433.8	OK
120	min Winte	r 2.601	0.601	0.0	1.9	0.0	1.9	480.8	O K
180	min Winte	r 2.636	0.636	0.0	1.9	0.0	1.9	509.0	O K
240	min Winte	r 2.661	0.661	0.0	1.9	0.0	1.9	528.7	OK
360	min Winte	r 2.694	0.694	0.0	1.9	0.0	1.9	555.2	O K
480	min Winte	r 2.715	0.715	0.0	1.9	0.0	1.9	572.3	Flood Risk
600	min Winte	r 2.730	0.730	0.0	1.9	0.0	1.9	584.0	Flood Risk
720	min Winte	r 2.740	0.740	0.0	1.9	0.0	1.9	592.2	Flood Risk
960	min Winte	r 2.785	0.785	0.0	1.9	0.0	1.9	628.0	Flood Risk
1440	min Winte	r 2.841	0.841	0.0	1.9	0.0	1.9	673.1	Flood Risk
2160	min Winte	r 2.883	0.883	0.0	1.9	0.0	1.9	706.6	Flood Risk
2880	min Winte	r 2.899	0.899	0.0	1.9	0.0	1.9	719.0	Flood Risk
4320	min Winte	r 2.824	0.824	0.0	1.9	0.0	1.9	659.2	Flood Risk
5760	min Winte	r 2.760	0.760	0.0	1.9	0.0	1.9	608.3	Flood Risk
7200	min Winte	r 2.698	0.698	0.0	1.9	0.0	1.9	558.1	O K
8640	min Winte	r 2.635	0.635	0.0	1.9	0.0	1.9	507.6	O K
10080	min Winte	r 2.564	0.564	0.0	1.9	0.0	1.9	450.9	OK

Storm Event			Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)	
30	min	Winter	127.487	0.0	164.0	0.0	41	
60	min	Winter	71.052	0.0	324.6	0.0	70	
120	min	Winter	39.599	0.0	317.1	0.0	130	
180	min	Winter	28.130	0.0	309.1	0.0	188	
240	min	Winter	22.070	0.0	303.3	0.0	246	
360	min	Winter	15.678	0.0	294.9	0.0	364	
480	min	Winter	12.300	0.0	288.8	0.0	482	
600	min	Winter	10.190	0.0	284.0	0.0	598	
720	min	Winter	8.738	0.0	279.9	0.0	716	
960	min	Winter	7.123	0.0	274.2	0.0	950	
1440	min	Winter	5.340	0.0	274.7	0.0	1410	
2160	min	Winter	4.004	0.0	570.6	0.0	2084	
2880	min	Winter	3.264	0.0	556.6	0.0	2740	
4320	min	Winter	2.296	0.0	524.3	0.0	3468	
5760	min	Winter	1.789	0.0	1031.1	0.0	4384	
7200	min	Winter	1.474	0.0	1040.7	0.0	5328	
8640	min	Winter	1.258	0.0	1023.5	0.0	6232	
10080	min	Winter	1.101	0.0	1007.2	0.0	7064	

JBA Consulting		Page 3
The Library	71 7	
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:46	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uramaye
Micro Drainage	Source Control 2020.1.3	

Rainfall Model						FEH	
Return Period (years)						100	
FEH Rainfall Version						1999	
Site Location (SB	624550	306900	TG	24550	06900	
C (1km)						-0.024	
D1 (1km)						0.267	
D2 (1km)						0.400	
D3 (1km)						0.243	
E (1km)						0.308	
F (1km)						2.475	
Summer Storms						Yes	
Winter Storms						Yes	
Cv (Summer)						0.750	
Cv (Winter)						0.850	
Shortest Storm (mins)						15	
Longest Storm (mins)						10080	
Climate Change %						+45	

Time Area Diagram

	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	
0	4	0.250	4	8	0.250	-8	12	0.250	

JBA Consulting		Page 4
The Library St Philips Courtyard		
Coleshill B46 3AD		Mirro
Date 14/06/2023 13:46	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	Diali lage
Micro Drainage	Source Control 2020.1.3	

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	30.3
Membrane Percolation (mm/hr)	1000	Length (m)	88.0
Max Percolation (1/s)	740.7	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0067-2000-1000-2000 Design Head (m) 1.000 Design Flow (1/s) 2.0 Flush-Flom Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 67 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow	(1/s)
Design Point	(Calculated)	1.000		2.0
	Flush-Flom	0.296		1.9
	Kick-Flo®	0.599		1.6
Mean Flow ove	r Head Range	-		1.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	1.6	1.200	2.2	3.000	3.3	7.000	4.9
0.200	1.9	1.400	2.3	3.500	3.5	7.500	5.1
0.300	1.9	1.600	2.5	4.000	3.8	8.000	5.2
0.400	1.9	1.800	2.6	4.500	4.0	8.500	5.4
0.500	1.8	2.000	2.7	5.000	4.2	9.000	5.5
0.600	1.6	2.200	2.9	5.500	4.4	9.500	5.7
0.800	1.8	2.400	3.0	6.000	4.6		
1.000	2.0	2.600	3.1	6.500	4.7		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:11 File	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	1

Half Drain Time : 3626 minutes.

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Status
15	min Summ	er 2.252	0.252	0.0	2.2	0.0	2.2	242.0	OK
30	min Summ	er 2.336	0.336	0.0	2.2	0.0	2.2	322.1	OK
60	min Summ	er 2.420	0.420	0.0	2.2	0.0	2.2	403.5	OK
120	min Summ	er 2.512	0.512	0.0	2.2	0.0	2.2	491.9	OK
180	min Summ	er 2.579	0.579	0.0	2.2	0.0	2.2	555.6	OK
240	min Summ	er 2.630	0.630	0.0	2.2	0.0	2.2	605.1	O K
360	min Summ	er 2.704	0.704	0.0	2.2	0.0	2.2	675.8	Flood Risk
480	min Summ	er 2.753	0.753	0.0	2.2	0.0	2.2	722.7	Flood Risk
600	min Summ	er 2.786	0.786	0.0	2.2	0.0	2.2	754.6	Flood Risk
720	min Summ	er 2.809	0.809	0.0	2.2	0.0	2.2	776.8	Flood Risk
960	min Summ	er 2.835	0.835	0.0	2.2	0.0	2.2	802.1	Flood Risk
1440	min Summ	er 2.850	0.850	0.0	2.2	0.0	2.2	816.3	Flood Risk
2160	min Summ	er 2.834	0.834	0.0	2.2	0.0	2.2	800.4	Flood Risk
2880	min Summ	er 2.803	0.803	0.0	2.2	0.0	2.2	770.5	Flood Risk
4320	min Summ	er 2.746	0.746	0.0	2.2	0.0	2.2	715.7	Flood Risk
5760	min Summ	er 2.699	0.699	0.0	2.2	0.0	2.2	671.0	OK
7200	min Summ	er 2.661	0.661	0.0	2.2	0.0	2.2	634.1	OK
8640	min Summ	er 2.625	0.625	0.0	2.2	0.0	2.2	599.7	O K
10080	min Summ	er 2.589	0.589	0.0	2.2	0.0	2.2	565.7	OK
15	min Wint	er 2.285	0.285	0.0	2.2	0.0	2.2	273.2	OK

		Stor		Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)	
					(m³)	(m³)	(m³)		
	15	min	Summer	163.329	0.0	170.8	0.0	27	
	30	min	Summer	107.213	0.0	183.7	0.0	42	
	60	min	Summer	66.819	0.0	349.4	0.0	72	
	120	min	Summer	40.799	0.0	365.3	0.0	130	
	180	min	Summer	30.824	0.0	360.4	0.0	190	
	240	min	Summer	25.274	0.0	348.8	0.0	250	
	360	min	Summer	19.000	0.0	330.0	0.0	370	
	480	min	Summer	15.410	0.0	320.1	0.0	490	
	600	min	Summer	13.024	0.0	314.5	0.0	608	
	720	min	Summer	11.309	0.0	311.3	0.0	728	
	960	min	Summer	8.976	0.0	308.6	0.0	966	
	1440	min	Summer	6.404	0.0	304.9	0.0	1444	
	2160	min	Summer	4.519	0.0	631.1	0.0	2160	
	2880	min	Summer	3.522	0.0	606.5	0.0	2796	
	4320	min	Summer	2.481	0.0	557.8	0.0	3424	
	5760	min	Summer	1.941	0.0	1111.9	0.0	4208	
	7200	min	Summer	1.614	0.0	1132.5	0.0	5040	
	8640	min	Summer	1.393	0.0	1127.0	0.0	5872	
-	10080	min	Summer	1.234	0.0	1095.4	0.0	6568	
	15	min	Winter	163.329	0.0	178.2	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:11 File	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow 1 (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Winter	2.378	0.378	0.0	2.2	0.0	2.2	363.0	ОК
60	min Winter	2.473	0.473	0.0	2.2	0.0	2.2	454.5	OK
120	min Winter	2.577	0.577	0.0	2.2	0.0	2.2	554.3	OK
180	min Winter	2.653	0.653	0.0	2.2	0.0	2.2	626.5	O K
240	min Winter	2.711	0.711	0.0	2.2	0.0	2.2	682.2	Flood Risk
360	min Winter	2.794	0.794	0.0	2.2	0.0	2.2	761.9	Flood Risk
480	min Winter	2.849	0.849	0.0	2.2	0.0	2.2	815.3	Flood Risk
600	min Winter	2.888	0.888	0.0	2.2	0.0	2.2	852.1	Flood Risk
720	min Winter	2.915	0.915	0.0	2.2	0.0	2.2	878.0	Flood Risk
960	min Winter	2.946	0.946	0.0	2.2	0.0	2.2	908.5	Flood Risk
1440	min Winter	2.968	0.968	0.0	2.2	0.0	2.2	928.9	Flood Risk
2160	min Winter	2.956	0.956	0.0	2.2	0.0	2.2	917.9	Flood Risk
2880	min Winter	2.928	0.928	0.0	2.2	0.0	2.2	891.0	Flood Risk
4320	min Winter	2.858	0.858	0.0	2.2	0.0	2.2	823.9	Flood Risk
5760	min Winter	2.802	0.802	0.0	2.2	0.0	2.2	769.8	Flood Risk
7200	min Winter	2.752	0.752	0.0	2.2	0.0	2.2	722.3	Flood Risk
8640	min Winter	2.706	0.706	0.0	2.2	0.0	2.2	677.6	Flood Risk
10080	min Winter	2.661	0.661	0.0	2.2	0.0	2.2	634.3	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
30	min	Winter	107.213	0.0	186.1	0.0	41
60	min	Winter	66.819	0.0	363.9	0.0	70
120	min	Winter	40.799	0.0	363.1	0.0	130
180	min	Winter	30.824	0.0	347.0	0.0	188
240	min	Winter	25.274	0.0	334.5	0.0	246
360	min	Winter	19.000	0.0	322.4	0.0	364
480	min	Winter	15.410	0.0	319.3	0.0	482
600	min	Winter	13.024	0.0	320.9	0.0	600
720	min	Winter	11.309	0.0	324.2	0.0	718
960	min	Winter	8.976	0.0	326.5	0.0	952
1440	min	Winter	6.404	0.0	322.7	0.0	1416
2160	min	Winter	4.519	0.0	640.4	0.0	2100
2880	min	Winter	3.522	0.0	622.7	0.0	2764
4320	min	Winter	2.481	0.0	590.7	0.0	3896
5760	min	Winter	1.941	0.0	1229.1	0.0	4448
7200	min	Winter	1.614	0.0	1206.1	0.0	5400
8640	min	Winter	1.393	0.0	1154.5	0.0	6312
10080	min	Winter	1.234	0.0	1104.9	0.0	7264

JBA Consulting		Page 3
The Library St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 10:11	Designed by jflow_atherstone	Drainage
File	Checked by	man rage
Micro Drainage	Source Control 2020.1.3	

Rainfall Model						FEH	
Return Period (years)						100	
FEH Rainfall Version						2013	
Site Location	GB	624621	307427	TG	24621	07427	
Data Type						Point	
Summer Storms						Yes	
Winter Storms						Yes	
Cv (Summer)						0.750	
Cv (Winter)						0.840	
Shortest Storm (mins)						15	
Longest Storm (mins)						10080	
Climate Change %						+45	

Time Area Diagram

	(mins) To:						(mins) To:	
0	4	0.283	4	8	0.283	8	12	0.283

JBA Consulting		Page 4
The Library St Philips Courtyard		
Coleshill B46 3AD Date 14/06/2023 10:11 File	Designed by jflow_atherstone Checked by	Micro Drainage
Micro Drainage	Source Control 2020.1.3	

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

32.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
100.0	Length (m)	1000	Membrane Percolation (mm/hr)
0.0	Slope (1:X)	888.9	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	2.000	Invert Level (m)

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0070-2200-1000-2200 Design Head (m) 1.000 Design Flow (1/s) 2.2 Flush-Florm Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 70 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	F.TOM (T/S)
Design Point	(Calculated)	1.000	2.2
	Flush-Flor	0.307	2.2
	Kick-Flo®	0.625	1.8
Mean Flow ove	er Head Range	-	1.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flor	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.8	1.200	2.4	3.000	3.6	7.000	5.4
0.200	2.1	1.400	2.6	3.500	3.9	7.500	5.6
0.300	2.2	1.600	2.7	4.000	4.2	8.000	5.8
0.400	2.2	1.800	2.9	4.500	4.4	8.500	5.9
0.500	2.1	2.000	3.0	5.000	4.6	9.000	6.1
0.600	1.9	2.200	3.2	5.500	4.8	9.500	6.3
0.800	2.0	2.400	3.3	6.000	5.0	4 1 2 2 4 4	
1.000	2.2	2.600	3.4	6.500	5.2		

Orifice Overflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library		
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:57	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uraniage
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 3419 minutes.

	Storm Event	Le	wel m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Status
15	min Summ	mer 2.	350	0.350	0.0	1.7	0.0	1.	284.7	ок
30	min Sumn	mer 2.	390	0.390	0.0	1.7	0.0	1.7	318.1	O K
60	min Summ	mer 2.	435	0.435	0.0	1.7	0.0	1.	354.3	OK
120	min Summ	mer 2.	482	0.482	0.0	1.7	0.0	1.7	392.7	O K
180	min Summ	ner 2.	510	0.510	0.0	1.7	0.0	1.	415.5	OK
240	min Summ	mer 2.	530	0.530	0.0	1.7	0.0	1.	431.5	O K
360	min Sumn	mer 2.	556	0.556	0.0	1.7	0.0	1.	453.1	O K
480	min Sumn	mer 2.	573	0.573	0.0	1.7	0.0	1.	467.1	OK
600	min Summ	mer 2.	585	0.585	0.0	1.7	0.0	1.	476.8	OK
720	min Summ	ner 2.	593	0.593	0.0	1.7	0.0	1.	483.4	OK
960	min Summ	mer 2.	630	0.630	0.0	1.7	0.0	1.	512.9	OK
1440	min Sumn	mer 2.	674	0.674	0.0	1.7	0.0	1.	549.3	OK
2160	min Summ	mer 2.	706	0.706	0.0	1.7	0.0	1.	574.9	Flood Risk
2880	min Sumn	ner 2.	715	0.715	0.0	1.7	0.0	1.	582.9	Flood Risk
4320	min Summ	ner 2.	663	0.663	0.0	1.7	0.0	1.	540.1	O K
5760	min Summ	mer 2.	617	0.617	0.0	1.7	0.0	1.	502.6	OK
7200	min Sumn	mer 2.	573	0.573	0.0	1.7	0.0	1.	467.0	O K
8640	min Sumn	mer 2.	528	0.528	0.0	1.7	0.0	1.	429.8	OK
10080	min Sumn	mer 2.	487	0.487	0.0	1.7	0.0	1.	396.8	OK
15	min Wint	er 2.	399	0.399	0.0	1.7	0.0	1.	324.7	OK

	Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)
15	min	Summer	228.747	0.0	145.3	0.0	27
30	min	Summer	127.487	0.0	145.0	0.0	42
60	min	Summer	71.052	0.0	283.0	0.0	72
120	min	Summer	39.599	0.0	284.0	0.0	130
180	min	Summer	28.130	0.0	281.4	0.0	190
240	min	Summer	22.070	0.0	277.8	0.0	250
360	min	Summer	15.678	0.0	270.2	0.0	370
480	min	Summer	12.300	0.0	262.9	0.0	488
600	min	Summer	10.190	0.0	256.8	0.0	608
720	min	Summer	8.738	0.0	251.4	0.0	728
960	min	Summer	7.123	0.0	239.5	0.0	966
1440	min	Summer	5.340	0.0	226.3	0.0	1444
2160	min	Summer	4.004	0.0	491.5	0.0	2160
2880	min	Summer	3.264	0.0	472.0	0.0	2744
4320	min	Summer	2.296	0.0	432.2	0.0	3416
5760	min	Summer	1.789	0.0	840.9	0.0	4160
7200	min	Summer	1.474	0.0	853.2	0.0	4976
8640	min	Summer	1.258	0.0	858.2	0.0	5712
10080	min	Summer	1.101	0.0	844.9	0.0	6456
15	min	Winter	228.747	0.0	145.6	0.0	27

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 13:57	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	urair rage
Micro Drainage	Source Control 2020.1.3	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow Σ (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Winte	r 2.445	0.445	0.0	1.7	0.0	1.7	362.7	ОК
60	min Winte	r 2.496	0.496	0.0	1.7	0.0	1.7	404.0	OK
120	min Winte	r 2.550	0.550	0.0	1.7	0.0	1.7	448.1	OK
180	min Winte	r 2.583	0.583	0.0	1.7	0.0	1.7	474.7	O K
240	min Winte	r 2.606	0.606	0.0	1.7	0.0	1.7	493.4	O K
360	min Winte	r 2.637	0.637	0.0	1.7	0.0	1.7	518.8	O K
480	min Winte	r 2.657	0.657	0.0	1.7	0.0	1.7	535.4	OK
600	min Winte	r 2.671	0.671	0.0	1.7	0.0	1.7	546.9	O K
720	min Winte	r 2.681	0.681	0.0	1.7	0.0	1.7	555.2	O K
960	min Winte	r 2.724	0.724	0.0	1.7	0.0	1.7	589.8	Flood Risk
1440	min Winte	r 2.779	0.779	0.0	1.7	0.0	1.7	634.5	Flood Risk
2160	min Winte	r 2.822	0.822	0.0	1.7	0.0	1.7	669.4	Flood Risk
2880	min Winte	r 2.840	0.840	0.0	1.7	0.0	1.7	684.2	Flood Risk
4320	min Winte	r 2.774	0.774	0.0	1.7	0.0	1.7	630.8	Flood Risk
5760	min Winte	r 2.719	0.719	0.0	1.7	0.0	1.7	585.6	Flood Risk
7200	min Winte	r 2.664	0.664	0.0	1.7	0.0	1.7	541.1	O K
8640	min Winte	r 2.610	0.610	0.0	1.7	0.0	1.7	496.6	OK
10080	min Winte	r 2.550	0.550	0.0	1.7	0.0	1.7	448.0	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
30	min	Winter	127.487	0.0	143.8	0.0	41
60	min	Winter	71.052	0.0	285.6	0.0	7.0
120	min	Winter	39.599	0.0	279.3	0.0	130
180	min	Winter	28.130	0.0	271.8	0.0	188
240	min	Winter	22.070	0.0	266.1	0.0	246
360	min	Winter	15.678	0.0	258.1	0.0	364
480	min	Winter	12.300	0.0	252.3	0.0	482
600	min	Winter	10.190	0.0	247.8	0.0	600
720	min	Winter	8.738	0.0	244.1	0.0	716
960	min	Winter	7.123	0.0	238.7	0.0	950
1440	min	Winter	5.340	0.0	239.1	0.0	1414
2160	min	Winter	4.004	0.0	495.9	0.0	2096
2880	min	Winter	3.264	0.0	485.1	0.0	2748
4320	min	Winter	2.296	0.0	458.8	0.0	3632
5760	min	Winter	1.789	0.0	945.0	0.0	4440
7200	min	Winter	1.474	0.0	932.5	0.0	5344
8640	min	Winter	1.258	0.0	896.5	0.0	6312
10080	min	Winter	1.101	0.0	874.6	0.0	7168

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 13:57	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uran rage
Micro Drainage	Source Control 2020.1.3	

Rainfall Model	FEH
Return Period (years)	100
FEH Rainfall Version	1999
Site Location GE	3 624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

Time		Area	Time	(mins)	Area	Time	(mins)	Area
From:		(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.233	4	8	0.233	-8	12	0.233

BA Consulting		Page 4
ne Library : Philips Courtyard		
hte 14/06/2023 13:57	Designed by jflow_atherstone Checked by	Micro Drainage

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

21.9	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
124.0	Length (m)	1000	Membrane Percolation (mm/hr)
0.0	Slope (1:X)	754.3	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	2.000	Invert Level (m)

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0063-1800-1000-1800 Design Head (m) 1.000 Design Flow (1/s) 1.8 Flush-Flom Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 63 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.000	1.8
	Flush-Flor	0.280	1.7
	Kick-Flo®	0.565	1.4
Mean Flow ove	r Head Range	-	1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flor	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.5	1.200	2.0	3.000	3.0	7.000	4.4
0.200	1.7	1.400	2.1	3.500	3.2	7.500	4.6
0.300	1.7	1.600	2.2	4.000	3.4	8.000	4.7
0.400	1.7	1.800	2.3	4.500	3.6	8.500	4.8
0.500	1.6	2.000	2.5	5.000	3.8	9.000	5.0
0.600	1.4	2.200	2.6	5.500	3.9	9.500	5.1
0.800	1.6	2.400	2.7	6.000	4.1	0.00	
1.000	1.8	2.600	2.8	6.500	4.3		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library	1	
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 10:41	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	Diamage
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 3366 minutes.

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status
15 min Summer	2.375	0.375	0.0	1.4	0.0	1.4	228.5	OK
30 min Summer	2.418	0.418	0.0	1.4	0.0	1.4	255.2	OK
60 min Summer	2.466	0.466	0.0	1.4	0.0	1.4	284.2	OK
120 min Summer	2.516	0.516	0.0	1.4	0.0	1.4	315.0	OK
180 min Summer	2.546	0.546	0.0	1.4	0.0	1.4	333.3	OK
240 min Summer	2.567	0.567	0.0	1.4	0.0	1.4	346.2	OK
360 min Summer	2.595	0.595	0.0	1.4	0.0	1.4	363.2	OK
480 min Summer	2.613	0.613	0.0	1.4	0.0	1.4	374.1	OK
600 min Summer	2.625	0.625	0.0	1.4	0.0	1.4	381.4	OK
720 min Summer	2.633	0.633	0.0	1.4	0.0	1.4	386.3	OK
960 min Summer	2.670	0.670	0.0	1.4	0.0	1.4	408.7	OK
1440 min Summer	2.715	0.715	0.0	1.4	0.0	1.4	436.1	OK
2160 min Summer	2.744	0.744	0.0	1.4	0.0	1.4	454.1	OK
2880 min Summer	2.753	0.753	0.0	1.4	0.0	1.4	459.2	OK
4320 min Summer	2.697	0.697	0.0	1.4	0.0	1.4	425.3	OK
5760 min Summer	2.649	0.649	0.0	1.4	0.0	1.4	396.0	OK
7200 min Summer	2.606	0.606	0.0	1.4	0.0	1.4	369.4	OK
8640 min Summer	2.564	0.564	0.0	1.4	0.0	1.4	344.3	OK
10080 min Summer	2.524	0.524	0.0	1.4	0.0	1.4	319.5	OK
15 min Winter	2.427	0.427	0.0	1.4	0.0	1.4	260.5	OK

15 min Summer 228.747 0.0 116.2 0.0 2 30 min Summer 127.487 0.0 114.8 0.0 4 60 min Summer 71.052 0.0 226.1 0.0 7 120 min Summer 39.599 0.0 222.2 0.0 13 180 min Summer 28.130 0.0 217.1 0.0 19 240 min Summer 22.070 0.0 213.2 0.0 25 360 min Summer 15.678 0.0 207.4 0.0 37 480 min Summer 12.300 0.0 203.1 0.0 48 600 min Summer 10.190 0.0 199.5 0.0 60	
60 min Summer 71.052 0.0 226.1 0.0 7 120 min Summer 39.599 0.0 222.2 0.0 13 180 min Summer 28.130 0.0 217.1 0.0 19 240 min Summer 22.070 0.0 213.2 0.0 25 360 min Summer 15.678 0.0 207.4 0.0 37 480 min Summer 12.300 0.0 203.1 0.0 48	7
120 min Summer 39.599 0.0 222.2 0.0 13 180 min Summer 28.130 0.0 217.1 0.0 19 240 min Summer 22.070 0.0 213.2 0.0 25 360 min Summer 15.678 0.0 207.4 0.0 37 480 min Summer 12.300 0.0 203.1 0.0 48	2
180 min Summer 28.130 0.0 217.1 0.0 19 240 min Summer 22.070 0.0 213.2 0.0 25 360 min Summer 15.678 0.0 207.4 0.0 37 480 min Summer 12.300 0.0 203.1 0.0 48	2
240 min Summer 22.070 0.0 213.2 0.0 25 360 min Summer 15.678 0.0 207.4 0.0 37 480 min Summer 12.300 0.0 203.1 0.0 48	2
360 min Summer 15.678 0.0 207.4 0.0 37 480 min Summer 12.300 0.0 203.1 0.0 48)
480 min Summer 12.300 0.0 203.1 0.0 48)
)
600 min Summer 10 190 0.0 199 5 0.0 60	3
000 MIN DAMMET 10.130 0.0 133.3 0.0	3
720 min Summer 8.738 0.0 196.5 0.0 72	3
960 min Summer 7.123 0.0 191.6 0.0 96	5
1440 min Summer 5.340 0.0 190.3 0.0 144	1
2160 min Summer 4.004 0.0 399.7 0.0 216)
2880 min Summer 3.264 0.0 387.8 0.0 262	3
4320 min Summer 2.296 0.0 359.4 0.0 333	2
5760 min Summer 1.789 0.0 678.0 0.0 409	5
7200 min Summer 1.474 0.0 688.1 0.0 490	1
8640 min Summer 1.258 0.0 686.4 0.0 578	4
10080 min Summer 1.101 0.0 666.2 0.0 656)
15 min Winter 228.747 0.0 115.0 0.0 2	7

JBA Consulting		Page 2
The Library St Philips Courtyard		
Coleshill B46 3AD	4	Micro
Date 14/06/2023 10:41	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uran rage
Micro Drainage	Source Control 2020.1.3	

	Ston Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
20	min	Winter	2 477	0 477	0.0	1.4	0.0	1.4	290.9	ок	
		Winter	30.00		0.0	1.4	0.0	1.4	324.0	OK	
120	min	Winter	2.589	0.589	0.0	1.4	0.0	1.4	359.2	OK	
180	min	Winter	2.623	0.623	0.0	1.4	0.0	1.4	380.3	OK	
240	min	Winter	2.648	0.648	0.0	1.4	0.0	1.4	395.1	OK	
360	min	Winter	2.680	0.680	0.0	1.4	0.0	1.4	415.0	OK	
480	min	Winter	2.702	0.702	0.0	1.4	0.0	1.4	428.0	O K	
600	min	Winter	2.716	0.716	0.0	1.4	0.0	1.4	436.9	OK	
720	min	Winter	2.726	0.726	0.0	1.4	0.0	1.4	443.2	OK	
960	min	Winter	2.771	0.771	0.0	1.4	0.0	1.4	470.1	OK	
1440	min	Winter	2.827	0.827	0.0	1.4	0.0	1.4	504.3	OK	
2160	min	Winter	2.869	0.869	0.0	1.4	0.0	1.4	530.1	OK	
2880	min	Winter	2.885	0.885	0.0	1.4	0_0	1.4	540.1	OK	
4320	min	Winter	2.815	0.815	0.0	1.4	0.0	1.4	497.1	OK	
5760	min	Winter	2.756	0.756	0.0	1.4	0.0	1.4	461.0	OK	
7200	min	Winter	2.698	0.698	0.0	1.4	0.0	1.4	426.0	OK	
8640	min	Winter	2.643	0.643	0.0	1.4	0.0	1.4	392.1	OK	
10080	min	Winter	2.588	0.588	0.0	1.4	0.0	1.4	358.8	OK	

Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)			
	30	min	Winter	127.487	0.0	111.7	0.0	41	
	60	min	Winter	71.052	0.0	222.1	0.0	7.0	
	120	min	Winter	39.599	0.0	214.6	0.0	130	
	180	min	Winter	28.130	0.0	210.3	0.0	188	
	240	min	Winter	22.070	0.0	207.4	0.0	246	
	360	min	Winter	15.678	0.0	203.5	0.0	364	
	480	min	Winter	12.300	0.0	201.0	0.0	482	
	600	min	Winter	10.190	0.0	199.3	0.0	598	
	720	min	Winter	8.738	0.0	198.1	0.0	716	
	960	min	Winter	7.123	0.0	200.4	0.0	950	
	1440	min	Winter	5.340	0.0	202.8	0.0	1412	
	2160	min	Winter	4.004	0.0	409.2	0.0	2084	
	2880	min	Winter	3.264	0.0	407.0	0.0	2740	
	4320	min	Winter	2.296	0.0	386.1	0.0	3468	
	5760	min	Winter	1.789	0.0	765.1	0.0	4384	
	7200	min	Winter	1.474	0.0	758.5	0.0	5328	
	8640	min	Winter	1.258	0.0	725.1	0.0	6232	
1	0080	min	Winter	1.101	0.0	687.3	0.0	7160	

JBA Consulting	Page 3	
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:41	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	aran rage
Micro Drainage	Source Control 2020.1.3	

Rainfall Model	FEH
Return Period (years)	100
FEH Rainfall Version	1999
Site Location GB	624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.187	4	8	0.187	-8	12	0.187

y jflow_atherstone Drainage
y

Storage is Online Cover Level (m) 3.200

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	24.5
Membrane Percolation (mm/hr)	1000	Length (m)	83.0
Max Percolation (1/s)	564.9	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0058-1500-1000-1500 Design Head (m) 1.000 Design Flow (1/s) 1.5 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 58 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.000	1.5
	Flush-Flor	0.253	1.4
	Kick-Flo®	0.515	1.1
Mean Flow ove	r Head Range	-	1.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.2	1.200	1.6	3.000	2.5	7.000	3.7
0.200	1.4	1.400	1.7	3.500	2.7	7.500	3.8
0.300	1.4	1.600	1.9	4.000	2.8	8.000	3.9
0.400	1.3	1.800	2.0	4.500	3.0	8.500	4.0
0.500	1.2	2.000	2.0	5.000	3.1	9.000	4.1
0.600	1.2	2.200	2.1	5.500	3.3	9.500	4.2
0.800	1.4	2.400	2.2	6.000	3.4	2.0	
1.000	1.5	2.600	2.3	6.500	3.5		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library		1
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 16:40	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uraniaye
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 3919 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow I (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
15	min Sum	nmer	2.390	0.390	0.0	0.7	0.0	0.7	147.3	ок
30	min Sum	nmer	2.435	0.435	0.0	0.7	0.0	0.7	164.6	O K
60	min Sum	nmer	2.485	0.485	0.0	0.7	0.0	0.7	183.4	OK
120	min Sum	nmer	2.538	0.538	0.0	0.7	0.0	0.7	203.3	O K
180	min Sum	nmer	2.569	0.569	0.0	0.7	0.0	0.7	215.2	OK
240	min Sum	nmer	2.591	0.591	0.0	0.7	0.0	0.7	223.6	OK
360	min Sum	nmer	2.621	0.621	0.0	0.7	0.0	0.7	234.8	OK
480	min Sum	nmer	2.641	0.641	0.0	0.7	0.0	0.7	242.1	OK
600	min Sum	nmer	2.654	0.654	0.0	0.7	0.0	0.7	247.1	OK
720	min Sum	nmer	2.663	0.663	0.0	0.7	0.0	0.7	250.6	OK
960	min Sum	nmer	2.703	0.703	0.0	0.8	0.0	0.8	265.6	Flood Risk
1440	min Sum	nmer	2.752	0.752	0.0	0.8	0.0	0.8	284.4	Flood Risk
2160	min Sum	nmer	2.788	0.788	0.0	0.8	0.0	0.8	297.9	Flood Risk
2880	min Sum	nmer	2.800	0.800	0.0	0.8	0.0	0.8	302.4	Flood Risk
4320	min Sum	nmer	2.746	0.746	0.0	0.8	0.0	0.8	282.0	Flood Risk
5760	min Sum	nmer	2.700	0.700	0.0	0.8	0.0	0.8	264.7	Flood Risk
7200	min Sum	nmer	2.660	0.660	0.0	0.7	0.0	0.7	249.3	O K
8640	min Sum	nmer	2.623	0.623	0.0	0.7	0.0	0.7	235.4	OK
10080	min Sum	nmer	2.589	0.589	0.0	0.7	0.0	0.7	222.5	OK
15	min Win	nter	2.444	0.444	0.0	0.7	0.0	0.7	167.9	OK

	Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
15	min	Summer	228.747	0.0	58.4	0.0	27	
30	min	Summer	127.487	0.0	55.3	0.0	42	
60	min	Summer	71.052	0.0	114.4	0.0	72	
120	min	Summer	39.599	0.0	112.2	0.0	132	
180	min	Summer	28.130	0.0	111.4	0.0	190	
240	min	Summer	22.070	0.0	111.0	0.0	250	
360	min	Summer	15.678	0.0	111.0	0.0	370	
480	min	Summer	12.300	0.0	111.6	0.0	488	
600	min	Summer	10.190	0.0	112.4	0.0	608	
720	min	Summer	8.738	0.0	112.7	0.0	728	
960	min	Summer	7.123	0.0	114.9	0.0	966	
1440	min	Summer	5.340	0.0	116.0	0.0	1444	
2160	min	Summer	4.004	0.0	230.8	0.0	2160	
2880	min	Summer	3.264	0.0	232.8	0.0	2692	
4320	min	Summer	2.296	0.0	219.5	0.0	3376	
5760	min	Summer	1.789	0.0	429.3	0.0	4144	
7200	min	Summer	1.474	0.0	416.2	0.0	4968	
8640	min	Summer	1.258	0.0	393.4	0.0	5792	
10080	min	Summer	1.101	0.0	368.2	0.0	6568	
15	min	Winter	228.747	0.0	55.2	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 16:40 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow I (1/s)	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Wint	er 2.496	0.496	0.0	0.7	0.0	0.7	187.5	O K
60	min Wint	er 2.552	0.552	0.0	0.7	0.0	0.7	208.8	O K
120	min Wint	er 2.613	0.613	0.0	0.7	0.0	0.7	231.6	OK
180	min Wint	er 2.649	0.649	0.0	0.7	0.0	0.7	245.4	O K
240	min Wint	er 2.675	0.675	0.0	0.8	0.0	0.8	255.0	O K
360	min Wint	er 2.710	0.710	0.0	0.8	0.0	0.8	268.2	Flood Risk
480	min Wint	er 2.733	0.733	0.0	0.8	0.0	0.8	276.9	Flood Risk
600	min Wint	er 2.749	0.749	0.0	0.8	0.0	0.8	283.0	Flood Risk
720	min Wint	er 2.760	0.760	0.0	0.8	0.0	0.8	287.4	Flood Risk
960	min Wint	er 2.808	0.808	0.0	0.8	0.0	0.8	305.5	Flood Risk
1440	min Wint	er 2.870	0.870	0.0	0.8	0.0	0.8	328.9	Flood Risk
2160	min Wint	er 2.919	0.919	0.0	0.9	0.0	0.9	347.6	Flood Risk
2880	min Wint	er 2.942	0.942	0.0	0.9	0.0	0.9	356.0	Flood Risk
4320	min Wint	er 2.875	0.875	0.0	0.8	0.0	0.8	330.6	Flood Risk
5760	min Wint	er 2.820	0.820	0.0	0.8	0.0	0.8	309.8	Flood Risk
7200	min Wint	er 2.767	0.767	0.0	0.8	0.0	0.8	289.9	Flood Risk
8640	min Wint	er 2.717	0.717	0.0	0.8	0.0	0.8	270.9	Flood Risk
10080	min Wint	er 2.669	0.669	0.0	0.8	0.0	0.8	252.9	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)
30	min	Winter	127.487	0.0	54.0	0.0	41
60	min	Winter	71.052	0.0	112.8	0.0	70
120	min	Winter	39.599	0.0	112.6	0.0	130
180	min	Winter	28.130	0.0	113.6	0.0	188
240	min	Winter	22.070	0.0	115.0	0.0	246
360	min	Winter	15.678	0.0	117.6	0.0	364
480	min	Winter	12.300	0.0	119.0	0.0	482
600	min	Winter	10.190	0.0	119.8	0.0	598
720	min	Winter	8.738	0.0	120.1	0.0	716
960	min	Winter	7.123	0.0	122.3	0.0	950
1440	min	Winter	5.340	0.0	123.1	0.0	1412
2160	min	Winter	4.004	0.0	247.1	0.0	2096
2880	min	Winter	3.264	0.0	248.8	0.0	2744
4320	min	Winter	2.296	0.0	234.4	0.0	3548
5760	min	Winter	1.789	0.0	455.5	0.0	4392
7200	min	Winter	1.474	0.0	436.4	0.0	5336
8640	min	Winter	1.258	0.0	415.5	0.0	6232
10080	min	Winter	1.101	0.0	394.5	0.0	7160

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 16:40	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	promode.
Micro Drainage	Source Control 2020.1.3	

Rainfall Model	FEH
Return Period (years)	100
FEH Rainfall Version	1999
Site Location GB	624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.120	4	8	0.120	8	12	0.120

JBA Consulting		Page 4
The Library	1 1	
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 16:40	Designed by jflow_atherstone	Desinage
File 2022-0896-VIEWS-001.SRCX	Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	4

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	14.0
Membrane Percolation (mm/hr)	1000	Length (m)	90.0
Max Percolation (1/s)	350.0	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0044-9000-1000-9000 Design Head (m) 1.000 Design Flow (1/s) 0.9 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 44 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow	(1/s)
Design Point	(Calculated)	1.000		0.9
	Flush-Flo™	0.194		0.7
	Kick-Flo®	0.394		0.6
Mean Flow ove	r Head Range			0.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flor	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	0.7	1.200	1.0	3.000	1.5	7.000	2.2
0.200	0.7	1.400	1.0	3.500	1.6	7.500	2.2
0.300	0.7	1.600	1.1	4.000	1.7	8.000	2.3
0.400	0.6	1.800	1.2	4.500	1.8	8.500	2.4
0.500	0.7	2.000	1.2	5.000	1.9	9.000	2.4
0.600	0.7	2.200	1.3	5.500	1.9	9.500	2.5
0.800	0.8	2.400	1.3	6.000	2.0	X 2.7	
1,000	0.9	2.600	1.4	6.500	2.1		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 16:26	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX Micro Drainage	Checked by Source Control 2020.1.3	المناقلة المناقدة

Half Drain Time : 3338 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Stat	tus
15	min Su	mmer	2.394	0.394	0.0	1.7	0.0	1.7	278.0		OK
30	min Su	ummer	2.440	0.440	0.0	1.7	0.0	1.7	310.4		OK
60	min Su	ummer	2.490	0.490	0.0	1.7	0.0	1.7	345.6		OK
120	min Su	ummer	2.543	0.543	0.0	1.7	0.0	1.7	382.9		OK
180	min Su	mmer	2.574	0.574	0.0	1.7	0.0	1.7	405.2		OK
240	min Su	ummer	2.596	0.596	0.0	1.7	0.0	1.7	420.8		OK
360	min Su	ummer	2.626	0.626	0.0	1.7	0.0	1.7	441.5		OK
480	min Su	mmer	2.644	0.644	0.0	1.7	0.0	1.7	454.7		OK
600	min Su	ummer	2.657	0.657	0.0	1.7	0.0	1.7	463.6		OK
720	min Su	ummer	2.666	0.666	0.0	1.7	0.0	1.7	469.6		OK
960	min Su	ummer	2.704	0.704	0.0	1.7	0.0	1.7	496.9	Flood	Risk
1440	min Su	ummer	2.751	0.751	0.0	1.7	0.0	1.7	530.2	Flood	Risk
2160	min Su	ummer	2.783	0.783	0.0	1.7	0.0	1.7	552.3	Flood	Rísk
2880	min Su	ummer	2.791	0.791	0.0	1.7	0.0	1.7	558.4	Flood	Rísk
4320	min Su	mmer	2.733	0.733	0.0	1.7	0.0	1.7	516.9	Flood	Risk
5760	min Su	mmer	2.682	0.682	0.0	1.7	0.0	1.7	481.0		OK
7200	min Su	ummer	2.635	0.635	0.0	1.7	0.0	1.7	448.2		OK
8640	min Su	ummer	2.591	0.591	0.0	1.7	0.0	1.7	416.8		OK
10080	min Su	ummer	2.544	0.544	0.0	1.7	0.0	1.7	383.8		OK
15	mín Wi	nter	2.449	0.449	0.0	1.7	0.0	1.7	316.9		OK

Storm Event		Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)		
					(m ³)	(m ³)	(m ³)	
	15	min	Summer	228.747	0.0	143.0	0.0	27
	30	min	Summer	127.487	0.0	141.6	0.0	42
	60	min	Summer	71.052	0.0	278.1	0.0	72
	120	min	Summer	39.599	0.0	275.2	0.0	132
	180	min	Summer	28.130	0.0	269.3	0.0	190
	240	min	Summer	22.070	0.0	264.2	0.0	250
	360	min	Summer	15.678	0.0	256.6	0.0	370
	480	min	Summer	12.300	0.0	250.8	0.0	488
	600	min	Summer	10.190	0.0	246.0	0.0	608
	720	min	Summer	8.738	0.0	241.9	0.0	728
	960	min	Summer	7.123	0.0	234.6	0.0	966
	1440	min	Summer	5.340	0.0	230.7	0.0	1444
	2160	min	Summer	4.004	0.0	489.2	0.0	2160
	2880	min	Summer	3.264	0.0	473.4	0.0	2632
	4320	min	Summer	2.296	0.0	437.2	0.0	3332
	5760	min	Summer	1.789	0.0	825.2	0.0	4096
	7200	min	Summer	1.474	0.0	838.3	0.0	4912
	8640	min	Summer	1.258	0.0	839.7	0.0	5792
1	0080	min	Summer	1.101	0.0	825.9	0.0	6560
	15	min	Winter	228.747	0.0	141.9	0.0	27

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 16:26 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow 1 (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Status
30	min Winter	2.501	0.501	0.0	1.7	0.0	1.7	353.8	ОК
60	min Winter	2.558	0.558	0.0	1.7	0.0	1.7	393.9	OK
120	min Winter	2.619	0.619	0.0	1.7	0.0	1.7	436.8	OK
180	min Winter	2.655	0.655	0.0	1.7	0.0	1.7	462.3	OK
240	min Winter	2.681	0.681	0.0	1.7	0.0	1.7	480.3	OK
360	min Winter	2.715	0.715	0.0	1.7	0.0	1.7	504.5	Flood Risk
480	min Winter	2.737	0.737	0.0	1.7	0.0	1.7	520.2	Flood Risk
600	min Winter	2.753	0.753	0.0	1.7	0.0	1.7	531.1	Flood Risk
720	min Winter	2.763	0.763	0.0	1.7	0.0	1.7	538.7	Flood Risk
960	min Winter	2.810	0.810	0.0	1.7	0.0	1.7	571.4	Flood Risk
1440	min Winter	2.869	0.869	0.0	1.7	0.0	1.7	613.0	Flood Risk
2160	min Winter	2.913	0.913	0.0	1.7	0.0	1.7	644.4	Flood Risk
2880	min Winter	2.931	0.931	0.0	1.7	0.0	1.7	656.6	Flood Risk
4320	min Winter	2.856	0.856	0.0	1.7	0.0	1.7	604.1	Flood Risk
5760	min Winter	2.793	0.793	0.0	1.7	0.0	1.7	559.9	Flood Risk
7200	min Winter	2.733	0.733	0.0	1.7	0.0	1.7	516.9	Flood Risk
8640	min Winter	2.673	0.673	0.0	1.7	0.0	1.7	475.1	O K
10080	min Winter	2.614	0.614	0.0	1.7	0.0	1.7	433.5	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)			
	30	min	Winter	127.487	0.0	138.6	0.0	41	
	60	min	Winter	71.052	0.0	275.4	0.0	70	
	120	min	Winter	39.599	0.0	265.5	0.0	130	
	180	min	Winter	28.130	0.0	259.6	0.0	188	
	240	min	Winter	22.070	0.0	255.6	0.0	246	
	360	min	Winter	15.678	0.0	250.2	0.0	364	
	480	min	Winter	12.300	0.0	246.5	0.0	482	
	600	min	Winter	10.190	0.0	243.7	0.0	598	
	720	min	Winter	8.738	0.0	241.6	0.0	716	
	960	min	Winter	7.123	0.0	242.8	0.0	950	
	1440	min	Winter	5.340	0.0	245.9	0.0	1412	
	2160	min	Winter	4.004	0.0	498.8	0.0	2084	
	2880	min	Winter	3.264	0.0	493.6	0.0	2744	
	4320	min	Winter	2.296	0.0	468.9	0.0	3500	
	5760	min	Winter	1.789	0.0	931.5	0.0	4384	
	7200	min	Winter	1.474	0.0	926.4	0.0	5328	
	8640	min	Winter	1.258	0.0	887.9	0.0	6232	
1	0080	min	Winter	1.101	0.0	846.1	0.0	7160	

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		
Date 14/06/2023 16:26 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Micro Drainage
Micro Drainage	Source Control 2020.1.3	-1

Rainfall Model	FEH
Return Period (years)	100
FEH Rainfall Version	1999
Site Location GB	624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.227	4	8	0.227	8	12	0.227

JBA Consulting		Page 4
The Library		
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 16:26	Designed by jflow_atherstone	Desinage
File 2022-0896-VIEWS-001.SRCX	Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

21.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
112.0	Length (m)	1000	Membrane Percolation (mm/hr)
0.0	Slope (1:X)	653.3	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	2.000	Invert Level (m)

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0063-1770-1000-1770 Design Head (m) 1.000 Design Flow (1/s) 1.8 Flush-Florm Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 63 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 1200 Suggested Manhole Diameter (mm)

Control Point	5	Head	(m)	Flow	(1/s)
Design Point (Calcu	lated)	1.	000		1.8
Flus	h-Flo™	0.	277		1.7
Kic	k-Flo®	0.	562		1.4
Mean Flow over Head	Range		-		1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) H	Flow (1/s)
0.100	1.5	1.200	2.0	3.000	3.0	7.000	4.4
0.200	1.7	1.400	2.1	3.500	3.2	7.500	4.6
0.300	1.7	1.600	2.2	4.000	3.4	8.000	4.7
0.400	1.7	1.800	2.3	4.500	3.6	8.500	4.8
0.500	1.6	2.000	2.5	5.000	3.8	9.000	5.0
0.600	1.4	2.200	2.6	5.500	3.9	9.500	5.1
0.800	1.6	2.400	2.7	6.000	4.1		
1.000	1.8	2.600	2.8	6.500	4.3		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:21 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 2441 minutes.

	Storm Event	Max Leve (m)	1 Depth	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status	
15	min Sun	mer 2.21	9 0.219	0.0	1.5	0.0	1.5	159.1	OK	
30	min Sun	mer 2.25	0 0.250	0.0	1.5	0.0	1.5	182.0	OK	
60	min Sun	mer 2.28	5 0.285	0.0	1.5	0.0	1.5	207.2	OK	
120	min Sun	mer 2.32	2 0.322	0.0	1.5	0.0	1.5	234.3	OK	
180	min Sum	mer 2.34	5 0.345	0.0	1.5	0.0	1.5	250.4	OK	
240	min Sum	mer 2.36	0 0.360	0.0	1.5	0.0	1.5	261.6	OK	
360	min Sun	mer 2.38	1 0.381	0.0	1.5	0.0	1.5	276.6	OK	
480	min Sun	mer 2.39	3 0.393	0.0	1.5	0.0	1.5	286.0	OK	
600	min Sun	mer 2.40	2 0.402	0.0	1.5	0.0	1.5	292.1	OK	
720	min Sun	mer 2.40	7 0.407	0.0	1.5	0.0	1.5	296.1	OK	
960	min Sun	mer 2.43	3 0.433	0.0	1.5	0.0	1.5	314.4	OK	
1440	min Sun	mer 2.46	3 0.463	0.0	1.5	0.0	1.5	336.5	OK	
2160	min Sum	mer 2.48	4 0.484	0.0	1.5	0.0	1.5	351.7	OK	
2880	min Sun	mer 2.49	4 0.494	0.0	1.5	0.0	1.5	359.3	OK	
4320	min Sum	mer 2.45	5 0.455	0.0	1.5	0.0	1.5	330.8	OK	
5760	min Sum	mer 2.41	9 0.419	0.0	1.5	0.0	1.5	304.7	OK	
7200	min Sum	mer 2.38	6 0.386	0.0	1.5	0.0	1.5	280.4	OK	
8640	min Sun	mer 2.35	5 0.355	0.0	1.5	0.0	1.5	257.8	OK	
10080	min Sun	mer 2.32	6 0.326	0.0	1.5	0.0	1.5	236.8	OK	
15	min Wir	iter 2.25	1 0.251	0.0	1.5	0.0	1.5	182.1	OK	

	Stor		Rain (mm/hr)	Flooded Volume	Discharge Volume	Overflow Volume	Time-Peak (mins)	
	Evel		(man/ILE)	(m³)	(m³)	(m³)	(mins)	
1	5 min	Summer	151.060	0.0	114.2	0.0	27	
		Summer					41	
		Summer		0.0	192.3	0.0	72	
	20 20000	Summer			215.3	0.0	130	
	0 min		19.974	0.0	226.6	0.0	190	
		Summer	15.803		232.4	0.0	250	
		Summer	11.359		235.8	0.0	368	
48	0 min	Summer	8.987	0.0		0.0	488	
60	0 min	Summer		0.0	232.9		606	
72	0 min	Summer	6.460	0.0	230.3	0.0	726	
96	0 min	Summer	5.310	0.0	224.1	0.0	964	
144	0 min	Summer	4.029	0.0	209.4	0.0	1442	
216	0 min	Summer	3.056	0.0	431.4	0.0	1976	
288	0 min	Summer	2.513	0.0	419.7	0.0	2368	
432	0 min	Summer	1.789	0.0	388.6	0.0	3068	
576	0 min	Summer	1.405	0.0	570.6	0.0	3856	
720	0 min	Summer	1.166	0.0	584.9	0.0	4616	
864	0 min	Summer	1.000	0.0	595.0	0.0	5440	
1008	0 min	Summer	0.879	0.0	601.1	0.0	6160	
1	5 min	Winter	151.060	0.0	120.0	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:21	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	ordin racje
Micro Drainage	Source Control 2020.1.3	

	Stori		Max Level	Max Depth	Max Infiltration	Max Control	Max Overflow	Max E Outflow	Max Volume	Status	
		01	(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m ³)		
30	min	Winter	2.286	0.286	0.0	1.5	0.0	1.5	208.2	OK	
60	min	Winter	2.326	0.326	0.0	1.5	0.0	1.5	236.9	OK	
120	min	Winter	2.369	0.369	0.0	1.5	0.0	1.5	268.0	OK	
180	min	Winter	2.394	0.394	0.0	1.5	0.0	1.5	286.7	OK	
240	min	Winter	2.413	0.413	0.0	1.5	0.0	1.5	299.9	OK	
360	min	Winter	2.437	0.437	0.0	1.5	0.0	1.5	317.7	OK	
480	min	Winter	2.453	0.453	0.0	1.5	0.0	1.5	329.3	O K	
600	min	Winter	2.464	0.464	0.0	1.5	0.0	1.5	337.3	OK	
720	min	Winter	2.472	0.472	0.0	1.5	0.0	1.5	342.9	OK	
960	min	Winter	2.504	0.504	0.0	1.5	0.0	1.5	366.1	OK	
1440	min	Winter	2.546	0.546	0.0	1.5	0.0	1.5	397.1	OK	
2160	min	Winter	2.578	0.578	0.0	1.5	0.0	1.5	419.8	OK	
2880	min	Winter	2.589	0.589	0.0	1.5	0_0	1.5	428.2	OK	
4320	min	Winter	2.538	0.538	0.0	1.5	0.0	1.5	390.7	OK	
5760	min	Winter	2.484	0.484	0.0	1.5	0.0	1.5	351.8	OK	
7200	min	Winter	2.433	0.433	0.0	1.5	0.0	1.5	314.8	OK	
8640	min	Winter	2.386	0.386	0.0	1.5	0.0	1.5	280.3	OK	
10080	min	Winter	2.342	0.342	0.0	1.5	0.0	1.5	248.6	OK	

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
30	min	Winter	85.910	0.0	123.0	0.0	41	
60	min	Winter	48.858	0.0	215.4	0.0	7.0	
120	min	Winter	27.786	0.0	234.5	0.0	128	
180	min	Winter	19.974	0.0	240.1	0.0	186	
240	min	Winter	15.803	0.0	241.1	0.0	246	
360	min	Winter	11.359	0.0	239.7	0.0	362	
480	min	Winter	8.987	0.0	236.8	0.0	480	
600	min	Winter	7.494	0.0	233.4	0.0	596	
720	min	Winter	6.460	0.0	229.8	0.0	714	
960	min	Winter	5.310	0.0	220.3	0.0	946	
1440	min	Winter	4.029	0.0	201.1	0.0	1406	
2160	min	Winter	3.056	0.0	430.7	0.0	2080	
2880	min	Winter	2.513	0.0	412.0	0.0	2716	
4320	min	Winter	1.789	0.0	379.1	0.0	3416	
5760	min	Winter	1.405	0.0	651.4	0.0	4264	
7200	min	Winter	1.166	0.0	668.4	0.0	5112	
8640	min	Winter	1.000	0.0	680.4	0.0	5888	
10080	min	Winter	0.879	0.0	687.0	0.0	6664	

	Page 3
	Micro
Designed by jflow_atherstone	Drainage
Checked by	uramaye
Source Control 2020.1.3	1
	Checked by

	Rainfall Model					FEH
R	Return Period (years)					30
	FEH Rainfall Version					1999
	Site Location	GB	624550	306900	TG 24550	06900
	C (1km)					-0.024
	D1 (1km)					0.267
	D2 (1km)					0.400
	D3 (1km)					0.243
	E (1km)					0.308
	F (1km)					2.475
	Summer Storms					Yes
	Winter Storms					Yes
	Cv (Summer)					0.750
	Cv (Winter)					0.850
S	Shortest Storm (mins)					15
	Longest Storm (mins)					10080
	Climate Change %					+45
	and the contract of the contra					

Time Area Diagram

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.203	4	8	0.203	8	12	0.203

JBA Consulting		Page 4
The Library St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 11:21	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	Diali lage
Micro Drainage	Source Control 2020.1.3	

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	32.3
Membrane Percolation (mm/hr)	1000	Length (m)	75.0
Max Percolation (1/s)	672.9	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2,000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0060-1600-1000-1600 Design Head (m) 1.000 Design Flow (1/s) 1.6 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 60 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.000	1.6
	Flush-Flor	0.262	1.5
	Kick-Flo®	0.531	1.2
Mean Flow ove	r Head Range		1.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.3	1.200	1.7	3.000	2.6	7.000	3.9
0.200	1.5	1.400	1.9	3.500	2.8	7.500	4.0
0.300	1.5	1.600	2.0	4.000	3.0	8.000	4.2
0.400	1.4	1.800	2.1	4.500	3.2	8.500	4.3
0.500	1.3	2.000	2.2	5.000	3.3	9.000	4.4
0.600	1.3	2.200	2.3	5.500	3.5	9.500	4.5
0.800	1.4	2.400	2.4	6.000	3.6		
1,000	1.6	2.600	2.5	6.500	3.8		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library		1 []
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 11:44	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uramaye
Micro Drainage	Source Control 2020.1.3	1

				Hal	f Drain Time	: 2340 m	inutes.			
	Stor		Max Level	Max	Max Infiltration	Max	Max	Max E Outflow	Max	Status
	BVEI		(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m ³)	
15	min	Summer	2.266	0.266	0.0	1.5	0.0	1.5	155.8	O F
30	min	Summer	2.304	0.304	0.0	1.5	0.0	1.5	177.9	OF
60	min	Summer	2.346	0.346	0.0	1.5	0.0	1.5	202.2	OF
120	min	Summer	2.390	0.390	0.0	1.5	0.0	1.5	228.3	OF
180	min	Summer	2.417	0.417	0.0	1.5	0.0	1.5	243.7	OF
240	min	Summer	2.435	0.435	0.0	1.5	0.0	1.5	254.5	OF
360	min	Summer	2.459	0.459	0.0	1.5	0.0	1.5	268.8	OF
480	min	Summer	2.475	0.475	0.0	1.5	0.0	1.5	277.8	OF
600	min	Summer	2.485	0.485	0.0	1.5	0.0	1.5	283.7	OF
720	min	Summer	2.492	0.492	0.0	1.5	0.0	1.5	287.5	OF
960	min	Summer	2.523	0.523	0.0	1.5	0.0	1.5	305.8	OF
1440	min	Summer	2.561	0.561	0.0	1.5	0.0	1.5	328.0	OF
2160	min	Summer	2.582	0.582	0.0	1.5	0.0	1.5	340.6	OF
2880	min	Summer	2.591	0.591	0.0	1.5	0.0	1.5	345.8	OF
4320	min	Summer	2.544	0.544	0.0	1.5	0.0	1.5	318.2	OF
5760	min	Summer	2.495	0.495	0.0	1.5	0.0	1.5	289.5	OF
7200	min	Summer	2.451	0.451	0.0	1.5	0.0	1.5	263.7	OF
8640	min	Summer	2.411	0.411	0.0	1.5	0.0	1.5	240.5	OF
0080	min	Summer	2.375	0.375	0.0	1.5	0.0	1.5	219.3	OF
15	min	Winter	2.304	0.304	0.0	1.5	0.0	1.5	178.0	OF

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)			
	15	min	Summer	151.060	0.0	117.2	0.0	27	
	30	min	Summer	85.910	0.0		0.0	41	
			Summer	48.858	0.0	192.8	0.0	72	
	120	min	Summer	27.786	0.0	216.1	0.0	130	
	180	min	Summer	19.974	0.0	227.6	0.0	190	
	240	min	Summer	15.803	0.0	232.9	0.0	250	
	360	min	Summer	11.359	0.0	234.6	0.0	368	
	480	min	Summer	8.987	0.0	232.6	0.0	488	
	600	min	Summer	7.494	0.0	229.6	0.0	606	
	720	min	Summer	6.460	0.0	226.2	0.0	726	
	960	min	Summer	5.310	0.0	216.2	0.0	964	
1	440	min	Summer	4.029	0.0	197.8	0.0	1442	
2	160	min	Summer	3.056	0.0	422.5	0.0	2052	
2	880	min	Summer	2.513	0.0	409.0	0.0	2392	
4	320	min	Summer	1.789	0.0	371.7	0.0	3124	
5	760	min	Summer	1.405	0.0	560.2	0.0	3880	
7	200	min	Summer	1.166	0.0	575.7	0.0	4624	
8	640	min	Summer	1.000	0.0	587.3	0.0	5448	
10	080	min	Summer	0.879	0.0	595.4	0.0	6160	
	15	min	Winter	151.060	0.0	121.6	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:44	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	arair rage
Micro Drainage	Source Control 2020.1.3	

	Stori Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min	Winter	2.347	0.347	0.0	1.5	0.0	1.5	203.2	ок
		Winter			0.0	1.5	0.0	1.5		O K
120	min	Winter	2.446	0.446	0.0	1.5	0.0	1.5		ок
180	min	Winter	2.477	0.477	0.0	1.5	0.0	1.5	279.0	ок
240	min	Winter	2.499	0.499	0.0	1.5	0.0	1.5	291.7	OK
360	min	Winter	2.528	0.528	0.0	1.5	0.0	1.5	309.1	OK
480	min	Winter	2.548	0.548	0.0	1.5	0.0	1.5	320.5	ОК
600	min	Winter	2.561	0.561	0.0	1.5	0.0	1.5	328.3	OK
720	min	Winter	2.570	0.570	0.0	1.5	0.0	1.5	333.6	OK
960	min	Winter	2.607	0.607	0.0	1.5	0.0	1.5	355.2	OK
1440	min	Winter	2.652	0.652	0.0	1.5	0.0	1.5	381.7	OK
2160	min	Winter	2.684	0.684	0.0	1.5	0.0	1.5	400.0	OK
2880	min	Winter	2.693	0.693	0.0	1.5	0_0	1.5	405.5	OK
4320	min	Winter	2.635	0.635	0.0	1.5	0.0	1.5	371.2	OK
5760	min	Winter	2.577	0.577	0.0	1.5	0.0	1.5	337.5	OK
7200	min	Winter	2.512	0.512	0.0	1.5	0.0	1.5	299.8	OK
8640	min	Winter	2.448	0.448	0.0	1.5	0.0	1.5	262.2	OK
10080	min	Winter	2.392	0.392	0.0	1.5	0.0	1.5	229.2	O K

	Storn Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Overflow Volume (m ³)	Time-Peak (mins)	
-		Z-1/2	The Sales					
30	min	Winter	85.910	0.0	123.5	0.0	41	
60	min	Winter	48.858	0.0	216.1	0.0	7.0	
120	min	Winter	27.786	0.0	234.7	0.0	128	
180	min	Winter	19.974	0.0	238.3	0.0	188	
240	min	Winter	15.803	0.0	237.5	0.0	246	
360	min	Winter	11.359	0.0	232.7	0.0	362	
480	min	Winter	8.987	0.0	227.3	0.0	480	
600	min	Winter	7.494	0.0	222.5	0.0	598	
720	min	Winter	6.460	0.0	218.3	0.0	714	
960	min	Winter	5.310	0.0	209.1	0.0	944	
1440	min	Winter	4.029	0.0	197.8	0.0	1402	
2160	min	Winter	3.056	0.0	429.6	0.0	2060	
2880	min	Winter	2.513	0.0	414.2	0.0	2684	
4320	min	Winter	1.789	0.0	380.2	0.0	3336	
5760	min	Winter	1.405	0.0	638.7	0.0	4272	
7200	min	Winter	1.166	0.0	656.8	0.0	5184	
8640	min	Winter	1.000	0.0	670.6	0.0	5960	
10080	min	Winter	0.879	0.0	680.1	0.0	6664	

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 11:44	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	aran rage
Micro Drainage	Source Control 2020.1.3	

Rainfall Model	FEH
Return Period (years)	30
FEH Rainfall Version	1999
Site Location GH	B 624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	
0	4	0.197	4	8	0.197	8	12	0.197	

JBA Consulting		Page 4
The Library St Philips Courtyard Coleshill B46 3AD		
Date 14/06/2023 11:44 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Micro Drainage
Micro Drainage	Source Control 2020.1.3	

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	26.0
Membrane Percolation (mm/hr)	1000	Length (m)	75.0
Max Percolation (1/s)	541.7	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0059-1590-1000-1590 Design Head (m) 1.000 Design Flow (1/s) 1.6 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 59 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.000	1.6
	Flush-Flor	0.262	1.5
	Kick-Flo®	0.531	1.2
Mean Flow ove	r Head Range		1.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.3	1.200	1.7	3.000	2.6	7.000	3.9
0.200	1.5	1.400	1.9	3.500	2.8	7.500	4.0
0.300	1.5	1.600	2.0	4.000	3.0	8.000	4.2
0.400	1.4	1.800	2.1	4.500	3.2	8.500	4.3
0.500	1.3	2.000	2.2	5.000	3.3	9.000	4.4
0.600	1.3	2.200	2.3	5.500	3.5	9.500	4.5
0.800	1.4	2.400	2.4	6.000	3.6		
1,000	1.6	2.600	2.5	6.500	3.8		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library		1
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:43	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uramaye
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 2217 minutes.

	Storm		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	2.246	0.246	0.0	1.9	0.0	1.9	197.1	OK
30	min.	Summer	2.281	0.281	0.0	1.9	0.0	1.9	225.2	OK
60	min .	Summer	2.320	0.320	0.0	1.9	0.0	1.9	256.0	OK
120	min.	Summer	2.361	0.361	0.0	1.9	0.0	1.9	289.0	OK
180	min	Summer	2.386	0.386	0.0	1.9	0.0	1.9	308.5	OK
240	min	Summer	2.402	0.402	0.0	1.9	0.0	1.9	321.9	OK
360	min	Summer	2.425	0.425	0.0	1.9	0.0	1.9	339.7	OK
480	min	Summer	2.438	0.438	0.0	1.9	0.0	1.9	350.5	OK
600	min	Summer	2.447	0.447	0.0	1.9	0.0	1.9	357.4	OK
720	min	Summer	2.452	0.452	0.0	1.9	0.0	1.9	361.7	OK
960	min	Summer	2.478	0.478	0.0	1.9	0.0	1.9	382.7	OK
1440	min	Summer	2.509	0.509	0.0	1.9	0.0	1.9	407.0	OK
2160	min .	Summer	2.529	0.529	0.0	1.9	0.0	1.9	423.3	OK
2880	min .	Summer	2.539	0.539	0.0	1.9	0.0	1.9	430.9	OK
4320	min	Summer	2.493	0.493	0.0	1.9	0.0	1.9	394.5	OK
5760	min	Summer	2.451	0.451	0.0	1.9	0.0	1.9	360.9	OK
7200	min	Summer	2.412	0.412	0.0	1.9	0.0	1.9	329.9	OK
8640	min	Summer	2.377	0.377	0.0	1.9	0.0	1.9	301.4	OK
10080	min	Summer	2.344	0.344	0.0	1.9	0.0	1.9	275.1	OK
15	min 1	Winter	2.282	0.282	0.0	1.9	0.0	1.9	225.3	OK

		Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
	15	min	Summer	151.060	0.0	148.4	0.0	27	
	30	min	Summer	85.910			0.0	41	
	60	min	Summer	48.858	0.0	241.5	0.0	72	
	120	min	Summer	27.786	0.0	272.1	0.0	130	
	180	min	Summer	19.974	0.0	289.0	0.0	190	
	240	min	Summer	15.803	0.0	299.1	0.0	248	
	360	min	Summer	11.359	0.0	307.8	0.0	368	
	480	min	Summer	8.987	0.0	308.7	0.0	486	
	600	min	Summer	7.494	0.0	307.0	0.0	606	
	720	min	Summer	6.460	0.0	304.3	0.0	724	
	960	min	Summer	5.310	0.0	297.4	0.0	964	
1	440	min	Summer	4.029	0.0	279.3	0.0	1440	
2	2160	min	Summer	3.056	0.0	556.2	0.0	1868	
2	2880	min	Summer	2.513	0.0	557.4	0.0	2280	
4	1320	min	Summer	1.789	0.0	518.3	0.0	2988	
	760	min	Summer	1.405	0.0	707.9	0.0	3800	
-	7200	min	Summer	1.166	0.0	726.8	0.0	4552	
8	640	min	Summer	1.000	0.0	740.7	0.0	5360	
1(080	min	Summer	0.879	0.0	749.8	0.0	6152	
	15	min	Winter	151.060	0.0	157.4	0.0	27	

JBA Consulting		Page 2
The Library	71 7	
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:43	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	namage
Micro Drainage	Source Control 2020.1.3	

	Ston	n	Маж	Max	Max	Маж	Маж	Max	Max	Status
	Even	t	Level	Depth (m)	Infiltration (1/s)	Control (1/s)	Overflow (1/s)	Σ Outflow (1/s)	Volume (m³)	
20				175					257 2	0.00
		Winter		2.377	0.0	1.9	0.0	1.9	22.00	OK
		Winter			0.0	1.9		1.9		OK
120	min	Winter	2.413	0.413	0.0	1.9	0.0	1.9	330.4	OK
180	min	Winter	2.441	0.441	0.0	1.9	0.0	1.9	353.0	OK
240	min	Winter	2.461	0.461	0.0	1.9	0.0	1.9	368.9	OK
360	min	Winter	2.488	0.488	0.0	1.9	0.0	1.9	390.2	OK
480	min	Winter	2.505	0.505	0.0	1.9	0.0	1.9	403.8	ОК
600	min	Winter	2.516	0.516	0.0	1.9	0.0	1.9	413.0	ОК
720	min	Winter	2.524	0.524	0.0	1.9	0.0	1.9	419.2	OK
960	min	Winter	2.558	0.558	0.0	1.9	0.0	1.9	446.3	OK
1440	min	Winter	2.602	0.602	0.0	1.9	0.0	1.9	481.8	OK
2160	min	Winter	2.634	0.634	0.0	1.9	0.0	1.9	507.1	OK
2880	min	Winter	2.643	0.643	0_0	1.9	0_0	1.9	514.5	OK
4320	min	Winter	2.579	0.579	0.0	1.9	0.0	1.9	463.1	ОК
5760	min	Winter	2.516	0.516	0.0	1.9	0.0	1.9	413.0	ок
	0.20	Winter			0.0	1.9		1.9		OK
		Winter			0.0	1.9		1.9		ОК
The second		Winter			0.0	1.9	0.0	1.9	282.7	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
30	min	Winter	85.910	0.0	161.9	0.0	41	
60	min	Winter	48.858	0.0	272.1	0.0	70	
120	min	Winter	27.786	0.0	300.9	0.0	128	
180	min	Winter	19.974	0.0	312.4	0.0	186	
240	min	Winter	15.803	0.0	316.2	0.0	246	
360	min	Winter	11.359	0.0	316.2	0.0	362	
480	min	Winter	8.987	0.0	313.3	0.0	480	
600	min	Winter	7.494	0.0	309.5	0.0	596	
720	min	Winter	6.460	0.0	305.2	0.0	712	
960	min	Winter	5.310	0.0	293.9	0.0	944	
1440	min	Winter	4.029	0.0	269.5	0.0	1404	
2160	min	Winter	3.056	0.0	571.0	0.0	2076	
2880	min	Winter	2.513	0.0	549.0	0.0	2708	
4320	min	Winter	1.789	0.0	514.2	0.0	3332	
5760	min	Winter	1.405	0.0	808.0	0.0	4160	
7200	min	Winter	1.166	0.0	830.4	0.0	5040	
8640	min	Winter	1.000	0.0	847.1	0.0	5800	
10080	min	Winter	0.879	0.0	858.5	0.0	6568	

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 13:43	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	Diamage.
Micro Drainage	Source Control 2020.1.3	

Rainfall Model			FEH
Return Period (years)			30
FEH Rainfall Version			1999
Site Location G	B 624550	306900 TG	24550 06900
C (1km)			-0.024
D1 (1km)			0.267
D2 (1km)			0.400
D3 (1km)			0.243
E (1km)			0.308
F (1km)			2.475
Summer Storms			Yes
Winter Storms			Yes
Cv (Summer)			0.750
Cv (Winter)			0.850
Shortest Storm (mins)			15
Longest Storm (mins)			10080
Climate Change %			+45
and the second s			

Time Area Diagram

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.250	4	8	0.250	8	12	0.250

JBA Consulting		Page 4
The Library		
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:43	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	Dialitarje
Micro Drainage	Source Control 2020.1.3	

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	30.3
Membrane Percolation (mm/hr)	1000	Length (m)	88.0
Max Percolation (1/s)	740.7	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0067-2000-1000-2000 Design Head (m) 1.000 Design Flow (1/s) 2.0 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 67 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow	(1/s)
Design Point	(Calculated)	1.000		2.0
	Flush-Flors	0.296		1.9
	Kick-Flo®	0.599		1.6
Mean Flow ove	r Head Range	-		1.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.6	1.200	2.2	3.000	3.3	7.000	4.9
0.200	1.9	1.400	2.3	3.500	3.5	7.500	5.1
0.300	1.9	1.600	2.5	4.000	3.8	8.000	5.2
0.400	1.9	1.800	2.6	4.500	4.0	8.500	5.4
0.500	1.8	2.000	2.7	5.000	4.2	9.000	5.5
0.600	1.6	2.200	2.9	5.500	4.4	9.500	5.7
0.800	1.8	2.400	3.0	6.000	4.6	1 2 2	
1,000	2.0	2.600	3.1	6.500	4.7		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:03 File	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	-1

Half Drain Time : 2446 minutes.

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status		
15	min	Summer	2.190	0.190	0.0	2.1	0.0	2.1	182.6	OK	
30	min	Summer	2.251	0.251	0.0	2.2	0.0	2.2	241.0	OK	
60	min	Summer	2.313	0.313	0.0	2.2	0.0	2.2	300.5	OK	
120	min	Summer	2.379	0.379	0.0	2.2	0.0	2.2	363.9	OK	
180	min	Summer	2.421	0.421	0.0	2.2	0.0	2.2	404.1	OK	
240	min	Summer	2.452	0.452	0.0	2.2	0.0	2.2	433.5	OK	
360	min	Summer	2.494	0.494	0.0	2.2	0.0	2.2	474.5	OK	
480	min	Summer	2.523	0.523	0.0	2.2	0.0	2.2	502.3	OK	
600	min	Summer	2.543	0.543	0.0	2.2	0.0	2.2	521.4	OK	
720	min	Summer	2.557	0.557	0.0	2.2	0.0	2.2	534.8	OK	
960	min	Summer	2.573	0.573	0.0	2.2	0.0	2.2	549.8	OK	
1440	min	Summer	2.577	0.577	0.0	2.2	0.0	2.2	554.3	OK	
2160	min	Summer	2.555	0.555	0.0	2.2	0.0	2.2	532.6	OK	
2880	min	Summer	2.532	0.532	0.0	2.2	0.0	2.2	510.3	OK	
4320	min	Summer	2.493	0.493	0.0	2.2	0.0	2.2	473.1	OK	
5760	min	Summer	2.460	0.460	0.0	2.2	0.0	2.2	441.2	OK	
7200	min	Summer	2.432	0.432	0.0	2.2	0.0	2.2	414.5	OK	
8640	min	Summer	2.407	0.407	0.0	2.2	0.0	2.2	391.0	OK	
10080	min	Summer	2.385	0.385	0.0	2.2	0.0	2.2	370.0	OK	
15	min	Winter	2.215	0.215	0.0	2.1	0.0	2.1	206.6	OK	

Storm		Rain	Flooded	Discharge	Owerflow	Wime-Peak			
Event				(mm/hr)	Volume	Volume	Volume	(mins)	
		LVCI		(man) III)	(m ³)	(m ³)	(m ³)	(mins)	
					(m-)	(m-)	(m-)		
	15	min	Summer	125.894	0.0	141.5	0.0	27	
	30	min	Summer	81.693	0.0	170.2	0.0	41	
	60	min	Summer	50.606	0.0	278.4	0.0	72	
	120	min	Summer	30.710	0.0	329.3	0.0	130	
	180	min	Summer	22.879	0.0	350.4	0.0	190	
- 3	240	min	Summer	18.538	0.0	356.7	0.0	250	
	360	min	Summer	13.736	0.0	357.0	0.0	368	
	480	min	Summer	11.075	0.0	352.6	0.0	488	
	600	min	Summer	9.342	0.0	346.8	0.0	608	
	720	min	Summer	8.112	0.0	340.7	0.0	726	
	960	min	Summer	6.457	0.0	328.9	0.0	966	
1	440	min	Summer	4.636	0.0	308.6	0.0	1442	
2	160	min	Summer	3.298	0.0	646.7	0.0	2008	
2	880	min	Summer	2.590	0.0	631.0	0.0	2284	
4	320	min	Summer	1.851	0.0	583.2	0.0	3028	
5	760	min	Summer	1.467	0.0	834.8	0.0	3808	
7	200	min	Summer	1.233	0.0	869.0	0.0	4616	
8	640	min	Summer	1.075	0.0	899.7	0.0	5448	
10	080	min	Summer	0.961	0.0	925.7	0.0	6248	
	15	min	Winter	125.894	0.0	155.7	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:03 File	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status		
30	min	Winter	2 293	0.283	0.0	2.2	0.0	2.2	272.2	ок	
5.0		Winter		2 . m dich.	0.0	2.2		2.2	339.1	OK	
	-	Winter			0.0	2.2	0.0	2.2	410.6	O K	
						2.2	100				
		Winter			0.0		0.0	2.2	456.3	O K	
167-35	250000	Winter	170773		0.0	2.2	0.0	2.2	489.8	OK	
360	min	Winter	2.560	0.560	0.0	2.2	0.0	2.2	537.3	OK	
480	min	Winter	2.594	0.594	0.0	2.2	0.0	2.2	570.0	OK	
600	min	Winter	2.618	0.618	0.0	2.2	0.0	2.2	593.3	OK	
720	min	Winter	2.636	0.636	0.0	2.2	0.0	2.2	610.1	OK	
960	min	Winter	2.656	0.656	0.0	2.2	0.0	2.2	630.0	OK	
1440	min	Winter	2.668	0.668	0.0	2.2	0 - 0	2.2	641.1	OK	
2160	min	Winter	2.653	0.653	0.0	2.2	0.0	2.2	627.2	OK	
2880	min	Winter	2.625	0.625	0.0	2.2	0.0	2.2	600.4	OK	
4320	min	Winter	2.566	0.566	0.0	2.2	0.0	2.2	543.7	OK	
5760	min	Winter	2.517	0.517	0.0	2.2	0.0	2.2	496.4	ок	
7200	min	Winter	2.474	0.474	0.0	2.2	0.0	2.2	454.7	OK	
8640	min	Winter	2.434	0.434	0.0	2.2	0.0	2.2	416.9	OK	
10080	min	Winter	2.399	0.399	0.0	2.2	0.0	2.2	382.7	OK	

Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)		
30	min	Winter	81.693	0.0	177.5	0.0	41	
60	min	Winter	50.606	0.0	309.5	0.0	7.0	
120	min	Winter	30.710	0.0	352.8	0.0	128	
180	min	Winter	22.879	0.0	361.4	0.0	188	
240	min	Winter	18.538	0.0	361.8	0.0	246	
360	min	Winter	13.736	0.0	355.7	0.0	364	
480	min	Winter	11.075	0.0	346.7	0.0	480	
600	min	Winter	9.342	0.0	337.2	0.0	598	
720	min	Winter	8.112	0.0	328.2	0.0	716	
960	min	Winter	6.457	0.0	314.5	0.0	950	
1440	min	Winter	4.636	0.0	295.1	0.0	1408	
2160	min	Winter	3.298	0.0	643.4	0.0	2080	
2880	min	Winter	2.590	0.0	622.0	0.0	2716	
4320	min	Winter	1.851	0.0	586.6	0.0	3328	
5760	min	Winter	1.467	0.0	940.9	0.0	4208	
7200	min	Winter	1.233	0.0	980.0	0.0	5048	
8640	min	Winter	1.075	0.0	1014.5	0.0	5888	
10080	min	Winter	0.961	0.0	1041.7	0.0	6752	

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:03 File	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Rainfall Details

Rainfall Model						FEH	
Return Period (years)						30	
FEH Rainfall Version						2013	
Site Location	GB	624621	307427	TG	24621	07427	
Data Type						Point	
Summer Storms						Yes	
Winter Storms						Yes	
Cv (Summer)						0.750	
Cv (Winter)						0.840	
Shortest Storm (mins)						15	
Longest Storm (mins)						10080	
Climate Change %						+45	

Time Area Diagram

Total Area (ha) 0.850

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.283	4	8	0.283	8	12	0.283

JBA Consulting		Page 4
The Library St Philips Courtyard Coleshill B46 3AD		Meso
Date 14/06/2023 10:03 File	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

32.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
100.0	Length (m)	1000	Membrane Percolation (mm/hr)
0.0	Slope (1:X)	888.9	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	2.000	Invert Level (m)

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0070-2200-1000-2200 Design Head (m) 1.000 Design Flow (1/s) 2.2 Flush-Florm Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 70. Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	2.2 2.2 1.8 1.9	
Design Point	(Calculated)	1.000		2.2
	Flush-Flor	0.307		2.2
	Kick-Flo®	0.625		1.8
Mean Flow ove	r Head Range	-		1.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.8	1.200	2.4	3.000	3.6	7,000	5.4
0.200	2.1	1.400	2.6	3.500	3.9	7.500	5.6
0.300	2.2	7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2.7	4.000	4.2	8.000	5.8
0.400	2.2	1.800	2.9	4.500	4.4	8.500	5.9
0.500	2.1	2.000	3.0	5.000	4.6	9.000	6.1
0.600	1.9	2.200	3.2	5.500	4.8	9.500	6.3
0.800	2.0	2.400	3.3	6.000	5.0		
1,000	2.2	2.600	3.4	6.500	5.2		

Orifice Overflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library		
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:55	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	manage
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 2413 minutes.

	Stor	130	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
15	min	Summer	2.225	0.225	0.0	1.7	0.0	1.7	182.9	OK	
30	min	Summer	2.257	0.257	0.0	1.7	0.0	1.7	209.2	OK	
60	min	Summer	2.292	0.292	0.0	1.7	0.0	1.7	238.1	OK	
120	min	Summer	2.330	0.330	0.0	1.7	0.0	1.7	269.2	OK	
180	min	Summer	2.353	0.353	0.0	1.7	0.0	1.7	287.6	OK	
240	min	Summer	2.369	0.369	0.0	1.7	0.0	1.7	300.5	OK	
360	min	Summer	2.390	0.390	0.0	1.7	0.0	1.7	317.6	OK	
480	min	Summer	2.403	0.403	0.0	1.7	0.0	1.7	328.3	OK	
600	min	Summer	2.412	0.412	0.0	1.7	0.0	1.7	335.3	OK	
720	min	Summer	2.417	0.417	0.0	1.7	0.0	1.7	339.8	OK	
960	min	Summer	2.443	0.443	0.0	1.7	0.0	1.7	360.5	OK	
1440	min	Summer	2.473	0.473	0.0	1.7	0.0	1.7	385.4	OK	
2160	min	Summer	2.494	0.494	0.0	1.7	0.0	1.7	402.3	OK	
2880	min	Summer	2.504	0.504	0.0	1.7	0.0	1.7	410.9	OK	
4320	min	Summer	2.465	0.465	0.0	1.7	0.0	1.7	379.0	OK	
5760	min	Summer	2.429	0.429	0.0	1.7	0.0	1.7	349.2	OK	
7200	min	Summer	2.395	0.395	0.0	1.7	0.0	1.7	321.5	OK	
8640	min	Summer	2.363	0.363	0.0	1.7	0.0	1.7	295.6	OK	
10080	min	Summer	2.334	0.334	0.0	1.7	0.0	1.7	271.7	OK	
15	min	Winter	2.257	0.257	0.0	1.7	0.0	1.7	209.3	OK	

		Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
	15	min	Summer	151.060	0.0	131.1	0.0	27	
	30	min	Summer	85.910	0.0	137.7	0.0	41	
			Summer	48.858	0.0	220.5	0.0	72	
1	120	min	Summer	27.786	0.0	247.0	0.0	130	
- 19	180	min	Summer	19.974	0.0	260.4	0.0	190	
2	240	min	Summer	15.803	0.0	267.4	0.0	250	
. 5	360	min	Summer	11.359	0.0	272.1	0.0	368	
1	480	min	Summer	8.987	0.0	271.5	0.0	486	
6	500	min	Summer	7.494	0.0	269.5	0.0	606	
15	720	min	Summer	6.460	0.0	266.7	0.0	726	
9	960	min	Summer	5.310	0.0	260.0	0.0	964	
14	440	min	Summer	4.029	0.0	243.9	0.0	1442	
21	160	min	Summer	3.056	0.0	499.0	0.0	1932	
28	380	min	Summer	2.513	0.0	488.9	0.0	2336	
43	320	min	Summer	1.789	0.0	451.8	0.0	3032	
57	760	min	Summer	1.405	0.0	655.6	0.0	3816	
72	200	min	Summer	1.166	0.0	672.1	0.0	4616	
86	540	min	Summer	1.000	0.0	683.9	0.0	5440	
100	080	min	Summer	0.879	0.0	691.0	0.0	6160	
	15	min	Winter	151.060	0.0	138.2	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 13:55	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX Micro Drainage	Checked by Source Control 2020.1.3	

	Ston	n	Max	Max	Max	Max	Max	Max	Max	Status
	Event	t	Level (m)	Depth (m)	Infiltration (1/s)	Control (1/s)	Overflow (1/s)	Σ Outflow (1/s)	Volume (m³)	
30	min	Winter	2.294	0.294	0.0	1.7	0.0	1.7	239.2	O K
60	min	Winter	2.334	0.334	0.0	1.7	0.0	1.7	272.2	OK
120	min	Winter	2.378	0.378	0.0	1.7	0.0	1.7	307.8	OK
180	min	Winter	2.404	0.404	0.0	1.7	0.0	1.7	329.2	O K
240	min	Winter	2.423	0.423	0.0	1.7	0.0	1.7	344.3	O K
360	min	Winter	2.448	0.448	0.0	1.7	0.0	1.7	364.7	OK
480	min	Winter	2.464	0.464	0.0	1.7	0.0	1.7	378.0	OK
600	min	Winter	2.475	0.475	0.0	1.7	0.0	1.7	387.0	OK
720	min	Winter	2.483	0.483	0.0	1.7	0.0	1.7	393.3	OK
960	min	Winter	2.515	0.515	0.0	1.7	0.0	1.7	419.6	OK
1440	min	Winter	2.558	0.558	0.0	1.7	0.0	1.7	454.4	OK
2160	min	Winter	2.591	0.591	0.0	1.7	0.0	1.7	481.6	O K
2880	min	Winter	2.603	0.603	0.0	1.7	0_0	1.7	491.5	OK
4320	min	Winter	2.547	0.547	0.0	1.7	0.0	1.7	445.6	OK
5760	min	Winter	2.493	0.493	0.0	1.7	0.0	1.7	401.9	ОК
7200	min	Winter	2.442	0.442	0.0	1.7	0.0	1.7	360.0	OK
8640	min	Winter	2.394	0.394	0.0	1.7	0.0	1.7	320.8	OK
10080	min	Winter	2.349	0.349	0.0	1.7	0.0	1.7	284.6	OK

		Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)	
	20	min	Winter	85.910	0.0	141.9	0.0	41	
			Winter	48.858					
	200	200					0.0		
			Winter	27.786				128	
	180	min	Winter	19.974	0.0	277.1	0.0	186	
	240	min	Winter	15.803	0.0	278.6	0.0	246	
	360	min	Winter	11.359	0.0	277.7	0.0	362	
	480	min	Winter	8.987	0.0	274.8	0.0	480	
	600	min	Winter	7.494	0.0	271.2	0.0	596	
	720	min	Winter	6.460	0.0	267.3	0.0	712	
	960	min	Winter	5.310	0.0	257.5	0.0	944	
	1440	min	Winter	4.029	0.0	236.7	0.0	1406	
	2160	min	Winter	3.056	0.0	500.3	0.0	2080	
	2880	min	Winter	2.513	0.0	478.2	0.0	2716	
	4320	min	Winter	1.789	0.0	446.9	0.0	3376	
	5760	min	Winter	1.405	0.0	748.5	0.0	4216	
	7200	min	Winter	1.166	0.0	768.1	0.0	5048	
	8640	min	Winter	1.000	0.0	781.9	0.0	5880	
1	0080	min	Winter	0.879	0.0	789.7	0.0	6664	

JBA Consulting		Page 3
The Library		
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 13:55	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	namage
Micro Drainage	Source Control 2020.1.3	

Rainfall Details

Rainfall Model	FEH
Return Period (years)	30
FEH Rainfall Version	1999
Site Location GB	624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

Total Area (ha) 0.700

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.233	4	8	0.233	8	12	0.233

JBA Consulting		Page 4
The Library St Philips Courtyard Coleshill B46 3AD		
Date 14/06/2023 13:55 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

21.9	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
124.0	Length (m)	1000	Membrane Percolation (mm/hr)
0.0	Slope (1:X)	754.3	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	2.000	Invert Level (m)

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0063-1800-1000-1800 Design Head (m) 1.000 Design Flow (1/s) 1.8 Flush-Florm Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 63 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.000	1.8
	Flush-Flor	0.280	1.7
	Kick-Flo®	0.565	1.4
Mean Flow ove	r Head Range	-	1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.5	1.200	2.0	3.000	3.0	7.000	4.4
0.200	1.7	1.400	2.1	3.500	3.2	7.500	4.6
0.300	1.7	1.600	2.2	4.000	3.4	8.000	4.7
0.400	1.7	1.800	2.3	4.500	3.6	8.500	4.8
0.500	1.6	2.000	2.5	5.000	3.8	9.000	5.0
0.600	1.4	2.200	2.6	5.500	3.9	9.500	5.1
0.800	1.6	2.400	2.7	6.000	4.1	2 20	
1.000	1.8	2.600	2.8	6.500	4.3		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library	71 7	1
St Philips Courtyard		
Coleshill B46 3AD		Mirro
Date 14/06/2023 10:52	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uran laye
Micro Drainage	Source Control 2020.1.3	

Half Drain Time : 2405 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status	
15	min	Summer	2.241	0.241	0.0	1.4	0.0	1.4	147.0	OK	
30	min	Summer	2.275	0.275	0.0	1.4	0.0	1.4	168.0	OK	
60	min	Summer	2.313	0.313	0.0	1.4	0.0	1.4	191.1	OK	
120	min	Summer	2.354	0.354	0.0	1.4	0.0	1.4	215.9	OK	
180	min	Summer	2.378	0.378	0.0	1.4	0.0	1.4	230.6	OK	
240	min	Summer	2.395	0.395	0.0	1.4	0.0	1.4	240.9	OK	
360	min	Summer	2.417	0.417	0.0	1.4	0.0	1.4	254.6	OK	
480	min	Summer	2.431	0.431	0.0	1.4	0.0	1.4	263.1	OK	
600	min	Summer	2.441	0.441	0.0	1.4	0.0	1.4	268.8	OK	
720	min	Summer	2.447	0.447	0.0	1.4	0.0	1.4	272.5	OK	
960	min	Summer	2.475	0.475	0.0	1.4	0.0	1.4	289.5	OK	
1440	min	Summer	2.510	0.510	0.0	1.4	0.0	1.4	311.2	OK	
2160	min	Summer	2.534	0.534	0.0	1.4	0.0	1.4	325.7	O K	
2880	min	Summer	2.543	0.543	0.0	1.4	0.0	1.4	331.2	OK	
4320	min	Summer	2.497	0.497	0.0	1.4	0.0	1.4	303.2	OK	
5760	min	Summer	2.454	0.454	0.0	1.4	0.0	1.4	277.2	OK	
7200	min	Summer	2.416	0.416	0.0	1.4	0.0	1.4	253.8	O K	
8640	min	Summer	2.381	0.381	0.0	1.4	0.0	1.4	232.4	OK	
10080	min	Summer	2.348	0.348	0.0	1.4	0.0	1.4	212.6	OK	
15	min	Winter	2.276	0.276	0.0	1.4	0.0	1.4	168.1	OK	

	Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Overflow Volume (m³)	Time-Peak (mins)	
15	min	Summer	151.060	0.0	108.3	0.0	27	
30	min	Summer	85.910		112.5	0.0	41	
60	min	Summer	48.858	0.0	180.3	0.0	72	
120	min	Summer	27.786	0.0	201.8	0.0	130	
180	min	Summer	19.974	0.0	212.2	0.0	190	
240	min	Summer	15.803	0.0	217.2	0.0	250	
360	min	Summer	11.359	0.0	219.2	0.0	368	
480	min	Summer	8.987	0.0	217.8	0.0	488	
600	min	Summer	7.494	0.0	215.3	0.0	606	
720	min	Summer	6.460	0.0	212.4	0.0	726	
960	min	Summer	5.310	0.0	204.8	0.0	964	
1440	min	Summer	4.029	0.0	187.8	0.0	1442	
2160	min	Summer	3.056	0.0	394.3	0.0	2100	
2880	min	Summer	2.513	0.0	380.3	0.0	2428	
4320	min	Summer	1.789	0.0	352.6	0.0	3120	
5760	min	Summer	1.405	0.0	528.1	0.0	3864	
7200	min	Summer	1.166	0.0	542.0	0.0	4624	
8640	min	Summer	1.000	0.0	552.3	0.0	5448	
10080	min	Summer	0.879	0.0	559.0	0.0	6168	
15	min	Winter	151.060	0.0	112.8	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:52	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	ordin radje
Micro Drainage	Source Control 2020.1.3	

	Storm		Маж	Max	Маж	Мах	Max	Max	Max	Status
	Event		rever	Depth	Infiltration				Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m ³)	
30	min Wi	inter	2.315	0.315	0.0	1.4	0.0	1.4	192.0	OK
60	min Wi	inter	2.358	0.358	0.0	1.4	0.0	1.4	218.4	OK
120	min Wi	inter	2.405	0.405	0.0	1.4	0.0	1.4	246.9	OK
180	min Wi	inter	2.433	0.433	0.0	1.4	0.0	1.4	264.0	ОК
240	min Wi	inter	2.453	0.453	0.0	1.4	0.0	1.4	276.1	OK
360	min Wi	inter	2.480	0.480	0.0	1.4	0.0	1.4	292.6	OK
480	min Wi	inter	2.497	0.497	0.0	1.4	0.0	1.4	303.4	O K
600	min Wi	inter	2.510	0.510	0.0	1.4	0.0	1.4	310.9	OK
720	min Wi	inter	2.518	0.518	0.0	1.4	0.0	1.4	316.3	OK
960	min Wi	inter	2.553	0.553	0.0	1.4	0.0	1.4	337.6	OK
1440	min Wi	inter	2.597	0.597	0.0	1.4	0.0	1.4	363.9	OK
2160	min Wi	inter	2.627	0.627	0.0	1.4	0.0	1.4	382.7	OK
2880	min Wi	inter	2.638	0.638	0.0	1.4	0_0	1.4	389.1	OK
4320	min Wi	inter	2.584	0.584	0.0	1.4	0.0	1.4	356.3	OK
5760	min Wi	inter	2.531	0.531	0.0	1.4	0.0	1.4	323.9	OK
7200	min Wi	inter	2.471	0.471	0.0	1.4	0.0	1.4	287.1	OK
8640	min Wi	inter	2.415	0.415	0.0	1.4	0.0	1.4	253.3	ОК
10080	min Wi	inter	2.366	0.366	0.0	1.4	0.0	1.4	223.0	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)		
30	min	Winter	85.910	0.0	114.9	0.0	41	
60	min	Winter	48.858	0.0	201.9	0.0	70	
120	min	Winter	27.786	0.0	219.0	0.0	128	
180	min	Winter	19.974	0.0	223.0	0.0	186	
240	min	Winter	15.803	0.0	222.9	0.0	246	
360	min	Winter	11.359	0.0	219.9	0.0	362	
480	min	Winter	8.987	0.0	215.7	0.0	480	
600	min	Winter	7.494	0.0	211.2	0.0	598	
720	min	Winter	6.460	0.0	206.9	0.0	714	
960	min	Winter	5.310	0.0	196.4	0.0	946	
1440	min	Winter	4.029	0.0	183.2	0.0	1404	
2160	min	Winter	3.056	0.0	398.5	0.0	2072	
2880	min	Winter	2.513	0.0	382.9	0.0	2708	
4320	min	Winter	1.789	0.0	351.3	0.0	3372	
5760	min	Winter	1.405	0.0	602.3	0.0	4320	
7200	min	Winter	1.166	0.0	618.9	0.0	5120	
8640	min	Winter	1.000	0.0	631.0	0.0	5896	
10080	min	Winter	0.879	0.0	638.7	0.0	6672	

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 10:52	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	aran rage
Micro Drainage	Source Control 2020.1.3	

Rainfall Details

Rainfall Model	FEH
Return Period (years)	30
FEH Rainfall Version	1999
Site Location GB	624550 306900 TG 24550 06900
C (1km)	-0.024
D1 (1km)	0.267
D2 (1km)	0.400
D3 (1km)	0.243
E (1km)	0.308
F (1km)	2.475
Summer Storms	Yes
Winter Storms	Yes
Cv (Summer)	0.750
Cv (Winter)	0.850
Shortest Storm (mins)	15
Longest Storm (mins)	10080
Climate Change %	+45

Time Area Diagram

Total Area (ha) 0.560											
Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)			
0	4	0.187	4	8	0.187	8	12	0.187			

JBA Consulting		Page 4
The Library St Philips Courtyard		
Coleshill B46 3AD Date 14/06/2023 10:52 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Micro Drainage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 3.200

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	24.5
Membrane Percolation (mm/hr)	1000	Length (m)	83.0
Max Percolation (1/s)	564.9	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2,000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0058-1500-1000-1500 Design Head (m) 1.000 Design Flow (1/s) 1.5 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 58 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	F.TOM (T/S)
Design Point	(Calculated)	1.000	1.5
	Flush-Flors	0.253	1.4
	Kick-Flo®	0.515	1.1
Mean Flow ov	er Head Range		1.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.2	1.200	1.6	3.000	2.5	7.000	3.7
0.200	1.4	1.400	1.7	3.500	2.7	7.500	3.8
0.300	1.4	1.600	1.9	4.000	2.8	8.000	3.9
0.400	1.3	1.800	2.0	4.500	3.0	8.500	4.0
0.500	1.2	2.000	2.0	5.000	3.1	9.000	4.1
0.600	1.2	2.200	2.1	5.500	3.3	9.500	4.2
0.800	1.4	2.400	2.2	6.000	3.4	2.7	
1.000	1.5	2.600	2.3	6.500	3.5		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library	1	
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 15/06/2023 15:01	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uramaye
Micro Drainage	Source Control 2020.1.3	

	Stor	m	Max	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Overflow	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(1/s)	(m ³)	
15	min	Summer	2.251	0.251	0.0	0.7	0.0	0.7	94.9	OR
30	min	Summer	2.287	0.287	0.0	0.7	0.0	0.7	108.4	OK
60	min	Summer	2.327	0.327	0.0	0.7	0.0	0.7	123.5	OK
120	min	Summer	2.370	0.370	0.0	0.7	0.0	0.7	139.8	OK
180	min	Summer	2.396	0.396	0.0	0.7	0.0	0.7	149.7	OK
240	min	Summer	2.415	0.415	0.0	0.7	0.0	0.7	156.8	OR
360	min	Summer	2.440	0.440	0.0	0.7	0.0	0.7	166.4	OR
480	min	Summer	2.457	0.457	0.0	0.7	0.0	0.7	172.6	OK
600	min	Summer	2.468	0.468	0.0	0.7	0.0	0.7	176.9	OF
720	min	Summer	2.476	0.476	0.0	0.7	0.0	0.7	179.9	OF
960	min	Summer	2.507	0.507	0.0	0.7	0.0	0.7	191.6	OF
1440	min	Summer	2.545	0.545	0.0	0.7	0.0	0.7	206.0	OF
2160	min	Summer	2.571	0.571	0.0	0.7	0.0	0.7	215.8	OF
2880	min	Summer	2.582	0.582	0.0	0.7	0.0	0.7	220.0	OF
4320	min	Summer	2.545	0.545	0.0	0.7	0.0	0.7	206.0	OF
5760	min	Summer	2.511	0.511	0.0	0.7	0.0	0.7	193.2	OF
7200	min	Summer	2.479	0.479	0.0	0.7	0.0	0.7	181.2	OF
8640	min	Summer	2.449	0.449	0.0	0.7	0.0	0.7	169.7	OF
0080	min	Summer	2.419	0.419	0.0	0.7	0.0	0.7	158.5	OF
15	min	Winter	2.287	0.287	0.0	0.7	0.0	0.7	108.4	OF

Storm Event		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)		
15	min	Summer	151.060	0.0	60.8	0.0	27	
30	min	Summer	85.910	0.0	61.1	0.0	42	
60	min	Summer	48.858	0.0	112.7	0.0	72	
120	min	Summer	27.786	0.0	118.0	0.0	130	
180	min	Summer	19.974	0.0	116.9	0.0	190	
240	min	Summer	15.803	0.0	115.1	0.0	250	
360	min	Summer	11.359	0.0	112.0	0.0	370	
480	min	Summer	8.987	0.0	109.5	0.0	488	
600	min	Summer	7.494	0.0	107.4	0.0	608	
720	min	Summer	6.460	0.0	105.6	0.0	726	
960	min	Summer	5.310	0.0	102.5	0.0	966	
1440	min	Summer	4.029	0.0	100.4	0.0	1442	
2160	min	Summer	3.056	0.0	213.7	0.0	2144	
2880	min	Summer	2.513	0.0	207.1	0.0	2476	
4320	min	Summer	1.789	0.0	190.7	0.0	3204	
5760	min	Summer	1.405	0.0	339.8	0.0	4032	
7200	min	Summer	1.166	0.0	347.8	0.0	4832	
8640	min	Summer	1.000	0.0	351.8	0.0	5704	
10080	min	Summer	0.879	0.0	347.4	0.0	6464	
15	min	Winter	151.060	0.0	61.3	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 15/06/2023 15:01	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uran rage
Micro Drainage	Source Control 2020.1.3	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
20	min Wir	tor	2 220	0 220	0.0	0.7	0.0	0.7	123.9	o K	
								2500			
	min Wir				0.0	0.7	0.0	0.7	141.1	OK	
120	min Wir	iter	2.423	0.423	0.0	0.7	0.0	0.7	159.8	OK	
180	min Wir	nter	2.453	0.453	0.0	0.7	0.0	0.7	171.2	OK	
240	min Wir	nter	2.474	0.474	0.0	0.7	0.0	0.7	179.3	OK	
360	min Wir	nter	2.504	0.504	0.0	0.7	0.0	0.7	190.4	OK	
480	min Wir	iter	2.523	0.523	0.0	0.7	0.0	0.7	197.8	ОК	
600	min Wir	iter	2.537	0.537	0.0	0.7	0.0	0.7	203.0	OK	
720	min Wir	iter	2.547	0.547	0.0	0.7	0.0	0.7	206.8	OK	
960	min Wir	nter	2.584	0.584	0.0	0.7	0.0	0.7	220.8	OK	
1440	min Wir	iter	2.632	0.632	0.0	0.7	0.0	0.7	238.9	OK	
2160	min Wir	iter	2.669	0.669	0.0	0.8	0.0	0.8	252.9	OK	
2880	min Wir	iter	2.684	0.684	0.0	0.0	0_0	0.8	258.7	OK	
4320	min Wir	iter	2.637	0.637	0.0	0.7	0.0	0.7	240.7	OK	
5760	min Wir	nter	2.593	0.593	0.0	0.7	0.0	0.7	224.2	OK	
7200	min Wir	nter	2.550	0.550	0.0	0.7	0.0	0.7	207.8	OK	
8640	min Wir	iter	2.507	0.507	0.0	0.7	0.0	0.7	191.7	OK	
10080	min Wir	iter	2.465	0.465	0.0	0.7	0.0	0.7	175.9	O K	

		Stor Even		Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
	30	min	Winter	85.910	0.0	60.7	0.0	41	
	60	min	Winter	48.858	0.0	118.5	0.0	7.0	
	120	min	Winter	27.786	0.0	116.4	0.0	130	
	180	min	Winter	19.974	0.0	114.1	0.0	188	
	240	min	Winter	15.803	0.0	112.4	0.0	246	
	360	min	Winter	11.359	0.0	109.9	0.0	364	
	480	min	Winter	8.987	0.0	108.2	0.0	480	
	600	min	Winter	7.494	0.0	106.8	0.0	598	
	720	min	Winter	6.460	0.0	105.8	0.0	714	
	960	min	Winter	5.310	0.0	105.6	0.0	946	
	1440	min	Winter	4.029	0.0	107.2	0.0	1406	
	2160	min	Winter	3.056	0.0	218.7	0.0	2076	
	2880	min	Winter	2.513	0.0	215.9	0.0	2712	
	4320	min	Winter	1.789	0.0	205.0	0.0	3380	
	5760	min	Winter	1.405	0.0	386.5	0.0	4320	
	7200	min	Winter	1.166	0.0	392.9	0.0	5256	
	8640	min	Winter	1.000	0.0	384.2	0.0	6144	
1	0080	min	Winter	0.879	0.0	364.7	0.0	7064	

JBA Consulting	Page 3	
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 15/06/2023 15:01 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Rainfall Details

	Rainfall Mo	odel			FEH	
Ret	urn Period (yea	ars)			30	
FE	H Rainfall Vers	sion			1999	
	Site Locat	cion GB	624550	306900	rg 24550 06900	
	C (1	km)			-0.024	
	D1 (1	km)			0.267	
	D2 (1	Lkm)			0.400	
	D3 (1	Lkm)			0.243	
	E (1	km)			0.308	
	F (1	km)			2.475	
	Summer Sto	orms			Yes	
	Winter Sto	orms			Yes	
	Cv (Summ	ner)			0.750	
	Cv (Wint	er)			0.850	
Sho	rtest Storm (mi	ins)			15	
Lo	ongest Storm (mi	ins)			10080	
	Climate Chang	ye %			+45	

Time Area Diagram

Total Area (ha) 0.360

Time		Area	Time	(mins)	Area	Time	(mins)	Area
From:		(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.120	4	8	0.120	8	12	0.120

JBA Consulting		Page 4
The Library St Philips Courtyard		
Coleshill B46 3AD Date 15/06/2023 15:01	Designed by jflow atherstone	Micro
File 2022-0896-VIEWS-001.SRCX	Checked by	Drainage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	14.0
Membrane Percolation (mm/hr)	1000	Length (m)	90.0
Max Percolation (1/s)	350.0	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	2.000	Membrane Depth (m)	0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0044-9000-1000-9000 Design Head (m) 1.000 Design Flow (1/s) 0.9 Flush-Flor Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 44 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow	(1/s)
Design Point	(Calculated)	1.000		0.9
	Flush-Flom	0.194		0.7
	Kick-Flo®	0.394		0.6
Mean Flow ove	r Head Range	-		0.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flor	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	0.7	1.200	1.0	3.000	1.5	7.000	2.2
0.200	0.7	1.400	1.0	3.500	1.6	7.500	2.2
0.300	0.7	1.600	1.1	4.000	1.7	8.000	2.3
0.400	0.6	1.800	1.2	4.500	1.8	8.500	2.4
0.500	0.7	2.000	1.2	5.000	1.9	9.000	2.4
0.600	0.7	2.200	1.3	5.500	1.9	9.500	2.5
0.800	0.8	2.400	1.3	6.000	2.0	X 2.7	
1,000	0.9	2.600	1.4	6.500	2.1		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

JBA Consulting		Page 1
The Library		1 1
St Philips Courtyard		
Coleshill B46 3AD		Micro
Date 14/06/2023 16:23	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	uramaye
Micro Drainage	Source Control 2020.1.3	1

Half Drain Time : 2371 minutes.

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Overflow (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
15 min Summer	2.254	0.254	0.0	1.7	0.0	1.7	179.1	OK	
30 min Summer	2.290	0.290	0.0	1.7	0.0	1.7	204.6	OK	
60 min Summer	2.330	0.330	0.0	1.7	0.0	1.7	232.6	OK	
120 min Summer	2.372	0.372	0.0	1.7	0.0	1.7	262.7	OK	
180 min Summer	2.398	0.398	0.0	1.7	0.0	1.7	280.5	OK	
240 min Summer	2.415	0.415	0.0	1.7	0.0	1.7	293.0	OK	
360 min Summer	2.439	0.439	0.0	1.7	0.0	1.7	309.4	OK	
480 min Summer	2.453	0.453	0.0	1.7	0.0	1.7	319.7	OK	
600 min Summer	2.463	0.463	0.0	1.7	0.0	1.7	326.4	OK	
720 min Summer	2.469	0.469	0.0	1.7	0.0	1.7	330.8	OK	
960 min Summer	2.498	0.498	0.0	1.7	0.0	1.7	351.1	OK	
1440 min Summer	2.533	0.533	0.0	1.7	0.0	1.7	376.3	OK	
2160 min Summer	2.559	0.559	0.0	1.7	0.0	1.7	394.2	OK	
2880 min Summer	2.569	0.569	0.0	1.7	0.0	1.7	401.5	OK	
4320 min Summer	2.519	0.519	0.0	1.7	0.0	1.7	366.2	OK	
5760 min Summer	2.475	0.475	0.0	1.7	0.0	1.7	335.2	OK	
7200 min Summer	2.435	0.435	0.0	1.7	0.0	1.7	307.0	OK	
8640 min Summer	2.398	0.398	0.0	1.7	0.0	1.7	281.0	OK	
10080 min Summer	2.364	0.364	0.0	1.7	0.0	1.7	257.2	OK	
15 min Winter	2.290	0.290	0.0	1.7	0.0	1.7	204.7	OK	

		Stor Even	7	Rain (mm/hr)	Flooded Volume (m ³)	Discharge Volume (m ³)	Overflow Volume (m ³)	Time-Peak (mins)	
					(m-)	(m-)	(m-)		
	15	min	Summer	151.060	0.0	132.2	0.0	27	
	30	min	Summer	85.910	0.0	137.7	0.0	41	
	60	min	Summer	48.858	0.0	219.3	0.0	72	
	120	min	Summer	27.786	0.0	245.7	0.0	130	
	180	min	Summer	19.974	0.0	259.0	0.0	190	
	240	min	Summer	15.803	0.0	265.6	0.0	250	
	360	min	Summer	11.359	0.0	269.1	0.0	368	
	480	min	Summer	8.987	0.0	267.8	0.0	488	
	600	min	Summer	7.494	0.0	265.2	0.0	606	
	720	min	Summer	6.460	0.0	262.0	0.0	726	
	960	min	Summer	5.310	0.0	253.6	0.0	964	
	1440	min	Summer	4.029	0.0	234.6	0.0	1442	
	2160	min	Summer	3.056	0.0	485.8	0.0	2100	
	2880	min	Summer	2.513	0.0	469.0	0.0	2448	
	4320	min	Summer	1.789	0.0	439.4	0.0	3076	
	5760	min	Summer	1.405	0.0	643.1	0.0	3864	
	7200	min	Summer	1.166	0.0	660.4	0.0	4616	
	8640	min	Summer	1.000	0.0	673.1	0.0	5440	
1	10080	min	Summer	0.879	0.0	681.7	0.0	6160	
	15	min	Winter	151.060	0.0	138.1	0.0	27	

JBA Consulting		Page 2
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 16:23	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	and made
Micro Drainage	Source Control 2020.1.3	

	Ston	m	Max	Max	Max	Мах	Маж	Max	Max	Status
	Even	t	Level (m)	Depth (m)	Infiltration (1/s)	Control (1/s)	Overflow (1/s)	Σ Outflow (1/s)	Volume (m³)	
30	min	Winter	2.331	0.331	0.0	1.7	0.0	1.7	233.7	ОК
60	min	Winter	2.377	0.377	0.0	1.7	0.0	1.7	265.7	OK
120	min	Winter	2.426	0.426	0.0	1.7	0.0	1.7	300.3	OK
180	min	Winter	2.455	0.455	0.0	1.7	0.0	1.7	321.0	ОК
240	min	Winter	2.476	0.476	0.0	1.7	0.0	1.7	335.7	O K
360	min	Winter	2.504	0.504	0.0	1.7	0.0	1.7	355.5	O K
480	min	Winter	2.522	0.522	0.0	1.7	0.0	1.7	368.4	OK
600	min	Winter	2.535	0.535	0.0	1.7	0.0	1.7	377.4	OK
720	min	Winter	2.544	0.544	0.0	1.7	0.0	1.7	383.7	OK
960	min	Winter	2.581	0.581	0.0	1.7	0.0	1.7	409.8	OK
1440	min	Winter	2.627	0.627	0.0	1.7	0.0	1.7	442.1	OK
2160	min	Winter	2.659	0.659	0.0	1.7	0.0	1.7	465.0	O K
2880	min	Winter	2.670	0.670	0.0	1.7	0_0	1.7	472.7	OK
4320	min	Winter	2.612	0.612	0.0	1.7	0.0	1.7	432.0	OK
5760	min	Winter	2.553	0.553	0.0	1.7	0.0	1.7	390.2	O K
7200	min	Winter	2.490	0.490	0.0	1.7	0.0	1.7	345.6	OK
8640	min	Winter	2.433	0.433	0.0	1.7	0.0	1.7	305.3	OK
10080	min	Winter	2.381	0.381	0.0	1.7	0.0	1.7	268.8	OK

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m³)	Time-Peak (mins)	
30	min	Winter	85.910	0.0	141.0	0.0	41	
60	min	Winter	48.858	0.0	245.8	0.0	70	
120	min	Winter	27.786	0.0	267.7	0.0	128	
180	min	Winter	19.974	0.0	273.7	0.0	186	
240	min	Winter	15.803	0.0	274.2	0.0	246	
360	min	Winter	11.359	0.0	271.5	0.0	362	
480	min	Winter	8.987	0.0	267.1	0.0	480	
600	min	Winter	7.494	0.0	262.3	0.0	596	
720	min	Winter	6.460	0.0	257.4	0.0	714	
960	min	Winter	5.310	0.0	243.9	0.0	946	
1440	min	Winter	4.029	0.0	225.7	0.0	1404	
2160	min	Winter	3.056	0.0	489.9	0.0	2076	
2880	min	Winter	2.513	0.0	470.3	0.0	2708	
4320	min	Winter	1.789	0.0	431.6	0.0	3376	
5760	min	Winter	1.405	0.0	733.3	0.0	4280	
7200	min	Winter	1.166	0.0	753.8	0.0	5112	
8640	min	Winter	1.000	0.0	768.9	0.0	5888	
10080	min	Winter	0.879	0.0	778.7	0.0	6664	

JBA Consulting		Page 3
The Library St Philips Courtyard Coleshill B46 3AD		Micro
Date 14/06/2023 16:23	Designed by jflow_atherstone	Drainage
File 2022-0896-VIEWS-001.SRCX	Checked by	aran rage
Micro Drainage	Source Control 2020.1.3	

Rainfall Details

Rainfall Model						FEH	
Return Period (years)						30	
FEH Rainfall Version						1999	
Site Location G	В	624550	306900	TG	24550	06900	
C (1km)						-0.024	
D1 (1km)						0.267	
D2 (1km)						0.400	
D3 (1km)						0.243	
E (1km)						0.308	
F (1km)						2.475	
Summer Storms						Yes	
Winter Storms						Yes	
Cv (Summer)						0.750	
Cv (Winter)						0.850	
Shortest Storm (mins)						15	
Longest Storm (mins)						10080	
Climate Change %						+45	

Time Area Diagram

Total Area (ha) 0.680

	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.227	4	8	0.227	8	12	0.227

JBA Consulting		Page 4
The Library St Philips Courtyard Coleshill B46 3AD		
Date 14/06/2023 16:23 File 2022-0896-VIEWS-001.SRCX	Designed by jflow_atherstone Checked by	Micro Drainage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 3.000

Porous Car Park Structure

21.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
112.0	Length (m)	1000	Membrane Percolation (mm/hr)
0.0	Slope (1:X)	653.3	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0	Membrane Depth (m)	2.000	Invert Level (m)

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0063-1770-1000-1770 Design Head (m) 1.000 Design Flow (1/s) 1.8 Flush-Flom Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 63 Invert Level (m) 2.000 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.000	1.8
	Flush-Flom	0.277	1.7
	Kick-Flo®	0.562	1.4
Mean Flow ove	er Head Range	_	1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flor	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.5	1.200	2.0	3.000	3.0	7.000	4.4
0.200	1.7	1.400	2.1	3.500	3.2	7.500	4.6
0.300	1.7	1.600	2.2	4.000	3.4	8.000	4.7
0.400	1.7	1.800	2.3	4.500	3.6	8.500	4.8
0.500	1.6	2.000	2.5	5.000	3.8	9.000	5.0
0.600	1.4	2.200	2.6	5.500	3.9	9.500	5.1
0.800	1.6	2.400	2.7	6.000	4.1	0.00	
1.000	1.8	2.600	2.8	6.500	4.3		

Weir Overflow Control

Discharge Coef 0.100 Width (m) 0.600 Invert Level (m) 3.000

H.4 Treatment

Simple Index Approach tool (SIA) Results

Project Tile Dealground
Project Code 2022-4885
Date 12/096/2022
Propared by Adam Oxle |
Reviewed by Gainh Hosson
BM reference DEALG-XXX-XX-SUDS-TBL-001-S3-P01

This tab e shows the results of the S mole loaks tool (SIA) developed by SEPA HR We impford and Cira. The SIA is described in Sect on 20.7.1 of the Mannual and this text should be referred too when interpretting the results of this table.

coation	Foliation Hazard, adioes				Appreguted Durface Water Politician Mithigation Index			Combine	Combined Rollation Milipation Indiaes			Kulfile ency of Poliution Militarian Indices		
	Hazard Level	Suspended Inlide	Milfals	Hydrocarbona	Total Suspended Solide	Metale	Hydrocarbans	Total Suspended Sollos	Metals	Hydrocarbons	Suspended Solids	Metals	Hydrocarbona	
Vfex-001-X	Low	0.5	D.	1	>0.55	0,95	0.95	×0.9%	0.95	1 0.85	Suff clent	Sufficient:	Sundent	
View-001-B	Low	0.5	0.	0.	>0.95	0.95	0.95	×0,95	0.96	0.95	Suff clent	Suff client	Sufficient	
View-001-C	LOW	0.5	D.	D.	>0.96	0.95	0.95	>0,95	0.95	0.95	Suff clent	Suff clent	Sufficient	
WE-001-A	Low	0.5	0.	0.	0.7	0.6	0.7	0.7	0.6	0.7	Suff clent	Suff clent	Sufficient	
WE-001-6	Edw	0.9	0.	0.	0.7	0.6	0.7	0,7	0.6	0.7	Suff clent	Suff clent	Sufficient	
WE-001-C	Low	0.5	0.	0.	0.7	0.6	0.7	0.7	0.6	0.7	Suff clent	Suff clent	Sufficient	
WE-001-0	Low	0.5	D.	0.	0.7	0.6	0.7	0,7	0.6	0.7	Suff clent	Suff cient	Sufficient	
WE-001-E	Low	0,5	0.	0.	0.7	0.6	0,7	0.7	0.6	0.7	Suff clent	Suff cient	Sufficient	
YE-001-A.	LIDAN	0.5	1	12:	0.7	0.6	0.7	0.7	0.6	0.7	Suff clent	Staff crient	Sumplem	
YE-001-B	Low	0,5	0.	D.	0.7	0.6	0,7	0.7	0.6	0.7	Suff clent	Sufficient.	Sufficient	
Highway-031	Medium	0.7	0.6	17	6.7	0.6	0.7	0.7	0.6	6.7	Suff clent	Siff pient	Sufficient	
Highway-002	Medium	0.7	0.6	9.7	0.7	0.6	0.7	0.7	0.6	0.7	Sufficient	Suff pient	Sufficient	

H.5 Maintenance

SUDS Maintenance Strategy

Dealground

June 2023

1 Introduction

This report identifies the SuDS maintenance plan for the 'Dealground' development, Norwich.

For the purpose of this report maintenance is referred to as:

- 1. Inspection required to identify asset performance to identify and plan maintenance needs.
- 2. Operation and maintenance of the drainage system

The SuDS features on site compromise of:

- 1. Pervious Paving
- 2. Green Roofs
- 3. Swales
- 4. Attenuation Storage Tanks
- 5. Bioretention Systems (rain gardens)
- 6. Inlet, Outlets and Inspection Chambers

The responsibility for the maintenance of SUDs is as following:

- 1. Where SuDS features are located within the curtilage of individual properties, maintenance responsibilities are completed by the homeowner. Any maintenance responsibilities for homeowners should be clearly outlined within property deeds.
- 2. The Management company, on behalf of the residents, is responsible for the maintenance of communal SuDS features.
- 3. The surface drainage system within the public highway, including both the attenuation tank and surface water pumping station, will be offered for adoption, who will be responsible for its maintenance.
- 4. Should Norfolk Country Council highways not adopt the road, then maintenance rests with the management company.

2 Maintenance Activities

2.1 Operation and Maintenance

Maintenance activities can be categorised as:

- 1. Regular maintenance (including inspections)
- 2. Occasional maintenance
- 3. Remedial maintenance

Regular maintenance tasks are to be carried on a predictable. This includes regular inspections/monitoring, and debris and litter removal.

Occasional maintenance task is required less frequently than regular tasks, but still periodically (e.g.filter replacement).

Remedial maintenances are required infrequently to rectify faults that are identified. Regular maintenance will reduce the likelihood of remedial maintenance. Therefore, remedial maintenance is likely to be unforeseen events that are difficult to predict and site specific. (e.g. erosion repairs, clearance of blockages).

The tables below show the maintenance plans for each of the SuDs features (CIRIA C753).

Table 2-1. Attenuation Storage Tank maintenance plan

Maintenance Schedule	Required action	Typical frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter- remove and replace surface infiltration medium as necessary	Annually
	Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required

Table 2-2. Pervious Paving maintenance plan

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn leaf fall, or reduced frequency as required, based on site specific observations of clogging or manufacturers recommendations - pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment
Occasional maintenance	Stabilise and mow contributing and adjacent areas	As Required
	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required - once per year on less frequently used pavements
Remedial Actions	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As Required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a Hazard to users, and replace lost jointing material	As Required
	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging
Monitoring	Initial inspection	Monthly for three months after installation
	inspect for evidence of poor operation and or weed growth - if required, take remedial action	Three monthly, 48 h after large storms in first six months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Table 2-3 Green Roof maintenance plan

Maintenance schedule	Required Action	Typical frequnecy
Regular inspections	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrify of waterproofing and structural stability	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	
	Inspect underside of roof for evidence of leakage	
Regular maintenance	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (ie year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required where (> 5% of coverage)	Annually (in autumn)
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required — clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial Actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled	'As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Table 2-4. Swale Maintenance Schedule

Maintenance schedule	Required action	Typical frequency
Regular Maintenance	Remove litter and debris	Monthly, or as required
	Cut grass – to retain grass height within specified design range	Monthly (during growing season), or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, or when required
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swale treatment area
Remedial Actions	Repair erosion or other damage by re- turfing or reseeding	As required
	Relevel uneven surfaces and reinstate design levels	
	Scarify and sp ke topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	
	Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	
	Remove and dispose of oils or petrol residues using safe standard practices	

Table 2-5. Bioretention system Maintenance schedule

Maintenance Schedule	Required action	Typical frequency
Regular inspections	Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary.	Quarterly
	Check operation of underdrains by inspection of flows after rain	Annually
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly
	Inspect inlets and outlets for blockage	Quarterly
Regular maintenance	Remove litter surface debris and weeds	Quarterly (or more frequently for tidiness or aesthetic reasons)
	Replace any plants, to maintain planting density	As required
	Remove sediment, litter and debris build- up from around inlets or from forebays	Quarterly to biannually
Occasional maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required	As required
	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required
Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be > 20 years

Offices at

Bristol Coleshill Doncaster Dublin Edinburgh Exeter Glasgow Haywards Heath Leeds Limerick Newcastle upon Tyne Newport Peterborough Portsmouth Saltaire Skipton Tadcaster Thirsk Wallingford Warrington

Registered Office 1 Broughton Park Old Lane North Broughton SKIPTON North Yorkshire BD23 3FD United Kingdom

+44(0)1756 799919 info@jbaconsulting.com www.jbaconsulting.com Follow us: in

Jeremy Benn Associates Limited

Registered in England 3246693

JBA Group Ltd is certified to: ISO 9001:2015 ISO 14001:2015 ISO 27001:2013 ISO 45001:2018

